Have a personal or library account? Click to login
Combinatorial proofs of some Stirling number formulas Cover

Combinatorial proofs of some Stirling number formulas

By: Mark Shattuck  
Open Access
|Oct 2015

References

  1. [1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948) 987-1000.
  2. [2] L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, (1968) 8-15.
  3. [3] W. Chu and C. Wei, Set partitions with restrictions, Discrete Math., 308 (2008) 3163-3168.
  4. [4] H. W. Gould and J. Quaintance, Implications of Spivey's Bell number formula, J. Integer Seq., 11 (2008) Art. 08.3.7.
  5. [5] T. Mansour, Combinatorics of Set Partitions, Chapman & Hall/CRC, Boca Raton, Florida, 2012.10.1201/b12691
  6. [6] T. Mansour and A. O. Munagi, Set partitions with circular successions, European J. Com- bin., 42 (2014) 207-216.
  7. [7] A. O. Munagi, Extended set partitions with successions, European J. Combin., 29 (2008) 1298-1308.
  8. [8] M. Shattuck, Recounting relations for set partitions with restrictions, Ars Combin., 91 (2009) 267-270.
  9. [9] M. A. Shattuck and C. G. Wagner, Parity theorems for statistics on domino arrangements, Electron. J. Combin., 12 (2005) #N10.10.37236/1977
  10. [10] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
  11. [11] M. Z. Spivey, A generalized recurrence for Bell numbers, J. Integer Seq., 11 (2008) Art. 08.2.5.
  12. [12] C. G. Wagner, Partition statistics and q-Bell numbers (q = -1), J. Integer Seq., 7 (2004) Art. 04.1.1.
Language: English
Page range: 107 - 113
Submitted on: Jun 29, 2014
Published on: Oct 7, 2015
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Mark Shattuck, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.