Have a personal or library account? Click to login
Motion-Induced Blindness Using Increments and Decrements of Luminance Cover

References

  1. Agresti, A., Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. American Statist., 54, 280-288.10.1080/00031305.2000.10474560
  2. Agresti, A., Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Statist., 52, 119-126.
  3. Balasubramanian, V., Sterling, P. (2009). Receptive fields and functional architecture of the retina. J. Physiol., 12, 2753-2767.10.1113/jphysiol.2009.170704
  4. Bonneh, Y. S., Cooperman, A., Sagi, D. (2001). Motion-induced blindness in normal observers. Nature, 411, 797-801.10.1038/35081073
  5. Bonneh, Y. S., Donner, T. H., Sagi, D., Fried, M., Cooperman, A., Heeger, D. J., Arieli, A. (2010). Motion-induced blindness and microsaccades: Cause and effect. J. Vis., 10, 1-15.10.1167/10.14.22
  6. Bonneh, Y. S., Donner, T. H., Cooperman, A., Heeger, D. J., Sagi, D. (2014). Motion-induced blindness and Troxler fading: Common and different mechanisms. PLoS ONE, 9, e92894.10.1371/journal.pone.0092894
  7. Burr, D. C., Ross, J. (2002). Direct evidence that “speedlines” influence motion mechanisms. J. Neurosci., 22, 8661-8664.10.1523/JNEUROSCI.22-19-08661.2002
  8. Caetta, F., Gorea, A., Bonneh, Y. S. (2007). Sensory and decisional factors in motion-induced blindness. J. Vis., 7 (7), 1-12.10.1167/7.7.4
  9. Clarke, F. J. J., Belcher, S. J. (1962). On the localization of Troxler’s effect in the visual pathway. Vis. Res., 2, 53-68.10.1016/0042-6989(62)90063-9
  10. Dacey, D. M. (2004). Origins of perception: Retinal ganglion cell diversity and the creation of parallel visual pathways. In: Gazzaniga, M. S. (Ed.). The Cognitive Neurosciences. 3rd edn. MIT Press, Cambridge, MA, pp. 281-303.
  11. Dacey, D. M., Joo, H. R., Peterson, B. B., Haun, T. J. (2010). Morphology, mosaics, and targets of diverse ganglion cell populations in macaque retina: Approaching a complete account. Investig. Ophthalmol. Vis. Sci., Vol. 51, April, 889. Available from: http://iovs.arvojournals.org/article.aspx?articleid=2369842&resultClick=1
  12. Del Viva, M. M., Gori, M., Burr, D. C. (2006). Powerful motion illusion aused by temporal asymmetries in ON and OFF visual pathways. J. Neurophysiol., 95, 3928-3932.10.1152/jn.01335.2005
  13. DeMarco, P. J., Hughes, A., Purkiss, T. J. (2000). Increment and decrement detection on temporally modulated fields. Vis. Res., 40, 1907-1919.10.1016/S0042-6989(00)00033-X
  14. Dolan, R. P., Schiller, P. H. (1994). Effects of ON channel blockade with 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys. Vis. Neurosci., 11, 23-32.10.1017/S095252380001107X8011580
  15. Donner, T. H., Sagi, D., Bonneh, Y. S., Heeger, D. J. (2008). Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci., 28, 10298-10310.10.1523/JNEUROSCI.2371-08.2008
  16. Donner, T. H., Sagi, D., Bonneh, Y. S., Heeger, D. J. (2013). Retinotopic patterns of correlated fluctuations in visual cortex reflect the dynamics of spontaneous perceptual suppression. J. Neurosci., 33, 2188-2198.10.1523/JNEUROSCI.3388-12.2013
  17. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7, 1-26.10.1214/aos/1176344552
  18. Efron, B., Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, FL. 456 pp.10.1007/978-1-4899-4541-9
  19. Funk, A. P., Pettigrew, J. D. (2003). Does interhemispheric competition mediate motion-induced blindness? A transcranial magnetic stimulation study. Perception, 32, 1328-1338.10.1068/p5088
  20. Gorea, A., Caetta, F., (2009). Adaptation and prolonged inhibition as a main cause of motion-induced blindness. J. Vis., 9, 1-17.10.1167/9.6.16
  21. Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578-580.10.1038/223578a0
  22. Glass, L., Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived. Perception, 5, 67-72.10.1068/p050067
  23. Graf, E. W., Adams, W. J., Lages, M. (2002). Modulating motion-induced blindness with depth ordering and surface completion. Vis. Res., 42, 2731-2735.10.1016/S0042-6989(02)00390-5
  24. Grindley, G. C., Townsend, V. (1965). Binocular masking induced by a moving object, Quarterly J. Exper. Psychol., 17, 97-109.10.1080/17470216508416418
  25. Hsu, L.-C., Yeh, S.-L., Kramer, P. A common mechanism for perceptual filling- in and motion-induced blindness. Vis. Res., 46, 1973-1981.10.1016/j.visres.2005.11.00416376963
  26. Jin, J., Wang, Y., Lashgari, R., Swadlow, H. A., Alonso, J.-M. (2011). Faster thalamocortical processing for dark than light visual targets. J. Neurosci., 31, 17471-17479.10.1523/JNEUROSCI.2456-11.2011347042522131408
  27. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception Psychophysics, 63, 1421-1455.10.3758/BF03194552
  28. Komban, S. J., Alonso, J.-M., Zaidi, Q. (2011). Darks are processed faster than lights. J. Neurosci., 31, 8654-8658.10.1523/JNEUROSCI.0504-11.2011326334921653869
  29. Krauskopf, J. (1963). Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Optical Soc. Amer., 53, 741-744.10.1364/JOSA.53.000741
  30. Krekelberg, B., Dannenberg, S., Hoffmann, K. P., Bremmer, F., Ross, J. (2003). Neural correlates of implied motion. Nature, 424, 674-677.10.1038/nature0185212904793
  31. Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., Dyar T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297-305.10.1016/j.neuron.2005.11.03316423702
  32. Mather, G., Pavan, A., Marotti, R. B., Campana, G., Casco, C. (2013). Interactions between motion and form processing in the human visual system. Frontiers Comput. Neurosci., 7, 1-6.10.3389/fncom.2013.00065365762923730286
  33. Moors, J., Coenen, A. M. L., Gerrits, H. J. M., Vendrik, A. J. H. (1974). The filling-in phenomenon in vision and McIlwain’s periphery effect. Exper. Brain Res., 19, 343-450.10.1007/BF00234459
  34. New, J. J., Scholl, B. J. (2008). “Perceptual scotomas'”: A functional account of motion-induced blindness. Psychol. Sci., 19, 653-659.10.1111/j.1467-9280.2008.02139.x18727780
  35. Ramachandran, V. S., Gregory, R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature, 350, 699-702.10.1038/350699a0
  36. Ratliff, C. P., Borghuis, B. G., Kao Y.-H., Sterling, P., Balasubramanian, V. (2010). Retina is structured to process an excess of darkness in natural scenes. Proc. Nat. Acad. Sci., 107, 17368-17373.10.1073/pnas.1005846107
  37. Ross, J., Badcock, D. R., Hayes, A. Coherent global motion in the absence of coherent velocity signals. Curr. Biol., 10, 679-682.10.1016/S0960-9822(00)00524-8
  38. Schiller, P. H. (1992). The ON and OFF channels of the visual system. Trends Neurosci., 15, 86-92.10.1016/0166-2236(92)90017-3
  39. Schiller, P. H., Sandell, J. H., Maunsell, J. H. R. (1986). Functions of the ON and OFF channels of the visual system. Nature, 322, 824-825.10.1038/322824a0
  40. Schölvinck, M. L., Rees, G. (2009). Attentional influences on the dynamics of motion-induced blindness. J. Vis., 9, 1-12.10.1167/9.1.38
  41. Tanaka, K. (1992). Inferotemporal cortex and higher visual functions. Curr. Opin. Neurobiol., 2, 502-505.10.1016/0959-4388(92)90187-P
  42. Troxler, D. (1804). Über das Verschwindern gegebener Gegenstände innerhalb unsers Gesichtskrcises. In: Himley, K., Schmidt, J. A. (eds.). Ophthalmologisches Bibliothek. Vol. II. Fromann, Jena, pp. 51-53.
  43. Wells, E. T., Leber, A. B., Sparrow, J. E. (2011). The role of mask coherence in motion-induced blindness. Perception, 40, 1503-1518.10.1068/p697622474768
  44. Westheimer, G. (2007). The ON-OFF dichotomy in visual processing: From receptors to perception. Progr. Retinal Eye Res., 26, 636-648.10.1016/j.preteyeres.2007.07.00317851105
  45. Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc., 22, 209-212.10.1080/01621459.1927.10502953
  46. Xing, D., Yeh, C.-I., Shapley, R. M. (2010). Generation of black-dominant responses in V1 cortex. J. Neurosci., 30, 13504-13512.10.1523/JNEUROSCI.2473-10.2010384248920926676
  47. Yeh, C.-I, D. Xing, R. M. Shapley (2009). “Black” responses dominate macaque primary visual cortex V1. J. Neurosci., 29, 11753-11760.10.1523/JNEUROSCI.1991-09.2009279683419776262
DOI: https://doi.org/10.1515/prolas-2017-0063 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 372 - 379
Submitted on: Oct 2, 2016
Accepted on: Jul 5, 2017
Published on: Nov 14, 2017
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Wm Wren Stine, Patricia A. Levesque, Megan E. Lusignan, Andrew J. Kitt, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.