Have a personal or library account? Click to login
Perception of Biological Motion in Central and Peripheral Visual Fields Cover

References

  1. Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47, 3023-3029.10.1016/j.neuropsychologia.2009.05.01919500604
  2. Barclay, C. D., Cutting, J. E., Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys., 23 (2), 145-152.10.3758/BF03208295643509
  3. Barrett, H. C., Todd, O. M., Miller, G. F., Blythe, P. W. (2005). Accurate judgments of intention from motion cues alone: A cross-cultural study. Evol. Hum. Behav., 26 (4), 313-331.10.1016/j.evolhumbehav.2004.08.015
  4. Beintema, J. A., Lappe, M. (2002). Perception of biological motion without local image motion. Proc. Natl. Acad. Sci. USA, 99 (8), 5661-5663.10.1073/pnas.08248369912282711960019
  5. Bertenhal, B. I., Pinto, J. (1994). Global processing of biological motion. Psychol. Sci., 5 (4), 221-225.10.1111/j.1467-9280.1994.tb00504.x
  6. Blake, R., Schiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58, 47-73.10.1146/annurev.psych.57.102904.19015216903802
  7. Boyton, G. M., Duncan, R. O. (2002). Visual acuity correlates with cortical magnification factors in human V1 [Abstract]. J. Vis., 2 (10), 11.
  8. Campbell, R. A., Lasky, E. Z. (1968). Adaptive Threshold Procedures: BUDTIF. J. Acoust. Soc. Amer., 44 (2), 537-54110.1121/1.19111175665523
  9. Chung, S. T. L., Mansfield, J. S., Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vis. Res., 38 (19), 2949-2962.
  10. Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34, 1171-1180.10.1068/p520316309112
  11. Cutting, J. E., Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychonomic Soc., 9 (5), 353-356.10.3758/BF03337021
  12. Cutting, J. M., Moore, C., Morrison, R. (1988). Masking the motions of human gait. Percept. Psychophys., 44 (4), 339-347.10.3758/BF032104153226881
  13. Duncan, R., O., Boynton, G., M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron, 38, 659-667.10.1016/S0896-6273(03)00265-4
  14. Finlay, D. (1982). Motion perception in the peripheral visual field. Perception, 11 (4), 457-462.10.1068/p110457
  15. Freire, A., Lewis, T. L., Maurer, D., Blake, R. (2006). The development of sensitivity to biological motion in noise. Perception, 35, 647-657.10.1068/p5403
  16. Giese, M. A. (2015). Biological and body motion perception In: Wagemans, J. (Ed.). The Oxford Handbook of Perceptual Organization. Oxford University Press, Oxford, pp. 575-600.
  17. Giese, M. A., Lappe, M. (2002). Measurement of generalization fields for the recognition of biological motion. Vis. Res., 42 (15), 1847-1858.10.1016/S0042-6989(02)00093-7
  18. Gurnsey, R., Roddy, G., Ouhnana, M., Troje, N. F. (2008). Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vis. Res., 48, 2827-2834.10.1016/j.visres.2008.09.016
  19. Gurnsey, R., Roddy, G., Troje, N. F. (2010) Limits of peripheral direction discrimination of point-light walkers. J. Vis., 10 (2), 1-17.10.1167/10.2.15
  20. Higgins, K. E., Arditi, A., Knoblauch, K., (1996). Detection and identification of mirror-image letter pairs in central and peripheral vision. Vis. Res., 36 (2), 331-337.10.1016/0042-6989(95)00117-I
  21. Hunt, A. R. Halper, F. (2008). Disorganizing biological motion. J. Vis., 8 (12), 1-5.10.1167/8.9.1218831648
  22. Ikeda, H., Blake, R., Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vis. Res., 45, 1935-1943.10.1016/j.visres.2005.02.00115820512
  23. Johansson, G. (1973), Visual perception of biological motion and a model for its analysis. Percept. Psychophys., 14, 201-211.10.3758/BF03212378
  24. Johansson, G., Van Hofsten, C., Jansson, G. (1980). Event perception. Ann. Rev. Psychol., 31, 27-63.10.1146/annurev.ps.31.020180.000331
  25. Johnston, A., Wright, M., (1986). Matching velocity in central and peripheral vision. Vis. Res., 26, 1099-1109.10.1016/0042-6989(86)90044-1
  26. Kalloniatis, M., Luu, C. (2005). Visual Acuity. In: Kolb, H., Fernandez, E., Nelson, R. (eds.). Webvision: The Organization of the Retina and Visual System. Salt Lake City (UT): University of Utah Health Sciences Center. May 1 [Updated 2007 Jun 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK11509/ (accessed 15 September 2016).
  27. Kozlowski, L.T., Cutting, J. E. (1977). Recognising the sex of a walker from a dynamic point-light display. Percept. Psychophys., 21, 575-58010.3758/BF03198740
  28. Lappin, J. S., Tadin, D., Nyquist, J. B., Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. J. Vis., 9 (1):30, 1-14.10.1167/9.1.30
  29. Levitt, H. (1970). Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Amer., 49 (2), 467-477.
  30. Mather, G., Radford, K., West, S. (1992). Low level visual processing of biological motion. Proc. Roy. Soc. London B: Biol. Sci., 249, 149-155.10.1098/rspb.1992.0097
  31. Mather, G., Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proc. Biol. Sci., 258 (1353), 273-279.
  32. McKay, L., Mackie, J., Piggott, J., Simmons, D. R., Pollick, F. E. (2006). Biological motion processing in autistic spectrum conditions: Perceptual and social factors. J. Vis., 6, 1036.
  33. McKee, S. P., Nakayama, K., (1984). The detection of motion in the peripheral visual field. Vis. Res., 24 (1), 25-32.10.1016/0042-6989(84)90140-8
  34. Meissirel, C., Wikler, K. C., Chalupa, L. M., Rakics, P., (1997). Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system. Proc. Natl. Acad. Sci. USA, 94 (11), 5900-5905.10.1073/pnas.94.11.5900208789159172
  35. Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., Alaerts, K., (2012). Recognizing biological motion and emotions from point-light displays in autism spectrum disorders, PLOS ONE, 7 (9), e44473.10.1371/journal.pone.0044473343531022970227
  36. Neri, P., Concetta Morrone, M., Burr, D. C. (1998). Seeing biological motion. Nature, 395, 894-896.10.1038/276619804421
  37. Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. MIT Press. 258 pp.
  38. Rovamo, J., Virsu, V., Näsänen, R., (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271, 54-56.10.1038/271054a0625324
  39. Sally, S. L., Gurnsey, R. (2003). Orientation discrimination in foveal and extra- foveal vision: Effects of stimulus bandwidth and contrast. Vis. Res., 43 (12), 1375-1385.10.1016/S0042-6989(03)00119-6
  40. Schouten, B., Davila, A., Verfaillie, K. (2013). Further explorations of the facing bias in biological motion perception: Perspective cues, observer sex, and response times. PloS One, 8 (2), e56978.10.1371/journal.pone.0056978358412723468898
  41. Sperling, G., Landy, M. S., Dosher, B. A., Perkins, M. E. (1989). Kinetic depth effect and identification of shape. J. Exper. Psychol.: Human Percept. Perform., 15 (4), 826-840.10.1037/0096-1523.15.4.8262531214
  42. Tannazzo, T., Kurylo, D. D., Bukhari, F. (2014). Perceptual grouping across eccentricity. Vis. Res., 103, 101-108.10.1016/j.visres.2014.08.01125175117
  43. Thompson, B., Hansen, B. C., Hess, R. F., Troje, N. F. (2007). Peripheral vision: Good for biological motion, bad for signal noise segregation? J. Vis., 7 (10):12, 1-7.10.1167/7.10.1217997681
  44. Tran, T. H., Guyader, N., Guerin, A., Despretz, P., Boucart, M., (2011). Figure ground discrimination in age-related macular degeneration. Investig. Ophthalm. Vis. Sci., 52, 1655-1660.10.1167/iovs.10-600321087956
  45. Troje, N. F., Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “Life Detector”? Curr. Biol., 16, 821-824.10.1016/j.cub.2006.03.02216631591
  46. Vanrie, J., Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Meth. Instrum. Comp., 36, 625-629.10.3758/BF0320654215641407
  47. Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull., 138 (6), 1172-1217.
  48. Wang, L., Yang, X., Shi, J., Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224.10.1016/j.neuroimage.2013.08.04123994124
  49. Wallach, H., O’Connell, D. N. (1953). The kinetic depth effect. J. Exper. Psychol., 45 (4), 205-217.10.1037/h005688013052853
  50. Wurbs, J., Mingolla, E., Yazdanbakhsh, A. (2013). Modeling a space-variant cortical representation for apparent motion. J. Vis., 13 (10):2, 1-17.10.1167/13.10.2
  51. Zacks, J. M., Tversky, B., Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. J. Exper. Psychol. Gen., 130 (1), 29-58.10.1037/0096-3445.130.1.29
  52. Zlatkova, M. B., Anderson, R. S., Ennis, F. A. (2001). Binocular summation for grating detection and resolution in foveal and peripheral vision. Vis. Res., 41 (24), 3093-3100.10.1016/S0042-6989(01)00191-2
DOI: https://doi.org/10.1515/prolas-2017-0056 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 320 - 326
Submitted on: Oct 3, 2016
Accepted on: Sep 18, 2017
Published on: Nov 14, 2017
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Ilze Laicāne, Jurģis Šķilters, Vsevolod Lyakhovetskii, Elīna Zimaša, Gunta Krūmiņa, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.