Have a personal or library account? Click to login
Robust Synchronisation of Uncertain Fractional-Order Chaotic Unified Systems Cover
Open Access
|Jun 2017

References

  1. Aghababa, M. P. (2014). Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy. J. Mech. Sci. Technol., 28 (5), 1875-1880.10.1007/s12206-014-0334-9
  2. Aghababa, M. P., Borjkhani, M. (2014). Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme. Complexity, 20 (2), 37-46.10.1002/cplx.21502
  3. Airaudo, M., Zanna, L. F. (2012). Interest rate rules, endogenous cycles, and chaotic dynamics in open economies. J. Econ. Dyn. Control, 36, 1566-584.10.1016/j.jedc.2012.06.003
  4. Banerjee, S., Mukhopadhyay, S., Amberto Rondoni L. (2012). Multi-image encryption based on synchronization of chaotic lasers and iris authentication. Opt. Laser Eng., 50 (7), 950-957.10.1016/j.optlaseng.2012.02.009
  5. Chai, Y. I., Chen, L., Wu, R., Dai, J. (2013). Q-S synchronization of the fractional-order unified system. PRAMANA - Journal of Physics, 80 (3), 449-461.10.1007/s12043-012-0488-x
  6. Cortes, F., Elejabarrieta, M. J. (2007). Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int. J. Numer. Meth. Eng., 69, 2173-2195.10.1002/nme.1840
  7. Faieghi, M. R., Delavari, H. (2012). Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun. Nonlinear Sci. Numer. Simulat., 17 (2), 731-741.10.1016/j.cnsns.2011.05.038
  8. Gao, W. (2012). Study on statistical properties of chaotic laser light. Phys. Lett. A, 331 (5), 292-297.
  9. Hernandez, R. T., Ramirez, V., Silva, G. I., Diwekar, U. M. (2014). A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions. Chemical Engineering Science, 117, 217-228.10.1016/j.ces.2014.06.034
  10. Hosseinalipour, S. M., Tohidi, A., Shokrpour, M., Nouri, N. M. (2013). Introduction of a chaotic dough mixer. Part A: mathematical modeling and numerical simulation, J. Mech. Sci. Technol., 27 (5), 1329-1339.
  11. Kareem, S. O., Ojo, K. S., Njah, A. N. (2012). Function projective synchronization of identical and non-identical modified finance and Shimizu- Morioka systems. PRAMANA - Journal of Physics, 79 (1), 71-79.10.1007/s12043-012-0281-x
  12. Kupka, J. (2014). Some chaotic and mixing properties of fuzzified dynamical systems, Inf. Sci., 279, 642-653.
  13. Li, R., Chen, W. (2014). Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn., 76 (1), 785-795.10.1007/s11071-013-1169-0
  14. Li, C., Tong, Y. (2013). Adaptive control and synchronization of a fractional- order chaotic system, PRAMANA - Journal of Physics, 80 (4), 583-592.10.1007/s12043-012-0500-5
  15. Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In: IEEE-SMC Proceedings of the Computational Engineering in Systems and Application Multiconference. IMACS, Lille, France, Vol. 2, pp. 963-968.
  16. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., Feliu, V. (2010). Fractional- order Systems and Controls. Springer. 2010. 415 pp.10.1007/978-1-84996-335-0
  17. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K. (2015). Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine affine cipher using date of birth (DOB). Nonlinear Dynamics, 80 (4), 1883-1897.10.1007/s11071-014-1583-y
  18. Padula, F., Visioli, A. (2014). Inversion-based feedforward and reference signal design for fractional constrained control systems. Automatica, 50 (8), 2169-2178.10.1016/j.automatica.2014.06.007
  19. Pai, M. C. (2014). Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Appl. Math. Comput., 227 (15), 663-671.10.1016/j.amc.2013.11.075
  20. Pakzad, M. A., Pakzad, S., Nekoui, M. A. (2013). Stability analysis of time-delayed linear fractional-order systems. Int. J. Control Autom. Syst., 11 (3), 519-525.10.1007/s12555-012-0164-4
  21. Pan, I., Korre, A., Das, S., Durucan, S. (2012). Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn., 70 (4), 2445-2461.10.1007/s11071-012-0632-7
  22. Provata, A., Katsaloulis, P., Verganelakis, D. A. (2012). Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images. Chaos Solitons Fractals, 45, 174-180.10.1016/j.chaos.2011.11.009
  23. Sarbaz, Y., Towhidkhah, F., Jafari, A., Gharibzadeh, S. (2012). Do the chaotic features of gait change in Parkinson’s disease? J. Theor. Biol., 307, 160-167.10.1016/j.jtbi.2012.04.03222588024
  24. Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., Leunga Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn.,76 (2), 905-914.10.1007/s11071-013-1177-0
  25. Tripathy, M. C., Mondal, D., Biswas, K., Sen, S. (2015a). Design and performance study of phase-locked loop using fractional-order loop filter. Int. J. Circ. Theor. Appl., 43 (6), 776-792.10.1002/cta.1972
  26. Tripathy, M. C., Mondal, D., Biswas, K., Sen, S. (2015b). Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circ. Theor. Appl., 43 (9), 1183-1196.10.1002/cta.2004
  27. Wang, J. R., Li, X. (2014). Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput., 46 (1), 321-334.10.1007/s12190-013-0751-4
  28. Xiao, X., Zhou, L., Zhang, Z. (2014). Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun. Nonlinear Sci. Numer. Simulat., 19 (6), 2039-2047.10.1016/j.cnsns.2013.10.020
  29. Yin, C., Dadras, S., Zhong, S., Chen, Y. Q. (2013). Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Appl. Math. Modelling, 37 (4), 2469-2483.10.1016/j.apm.2012.06.002
  30. Zhang, L., Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dyn., 76 (3), 1761-1767.10.1007/s11071-014-1244-1
DOI: https://doi.org/10.1515/prolas-2017-0012 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 69 - 77
Submitted on: Dec 13, 2014
Accepted on: Aug 13, 2016
Published on: Jun 1, 2017
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Naeimadeen Noghredani, Saeed Balochian, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.