Have a personal or library account? Click to login
Spike Morphology Genes in Wheat Species (Triticum L.) Cover

References

  1. Amagai, Y., Martinek, P., Watanabe, N., Kuboyama, T. (2014). Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum L. Genet. Resour. Crop Ev., 61 (2), 465–471.10.1007/s10722-013-0050-9
  2. Anonymous (2015). FAOSTAT.FAO, Rome, Italy. Available at: http://faostat.fao.org (accessed 15 August 2016).
  3. Antonyuk, M. Z., Prokopyk, D. O., Martynenko, V. S., Ternovska, T. K. (2012). Identification of the genes promoting awnedness in the Triticum aestivum/Aegilops umbellulata introgressive line. Cytol. Genet., 46 (3), 136–143.10.3103/S0095452712030024
  4. Ariel, F. D., Manavella, P. A., Dezar, C. A., Chan, R. L. (2007). The true story of the HD-Zip family. Trends Plant Sci., 12 (9), 419–426.10.1016/j.tplants.2007.08.00317698401
  5. Boden, S. A., Cavanagh, C., Cullis, B. R., Ramm, K., Greenwood, J., Finnegan, E. J., Trevaskis, B., Swain, S. M. (2015). Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants, 1, doi: 10.1038/nplants.2014.1610.1038/nplants.2014.1627246757
  6. Chen, Q. F., Yen, C., Yang, J. L. (1998). Chromosome location of the gene for the hulled character in the Tibetan weedrace of common wheat. Genet. Resour. Crop Ev., 45, 407–410.10.1023/A:1008635208146
  7. Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.10.1126/science.1088060512770812893888
  8. Chuck, G., Meeley, R., Irish, E., Sakai, H., Hake, S. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet., 39 (12), 1517–1521.10.1038/ng.2007.2018026103
  9. Dobrovolskaya, O., Martinek, P., Voylokov, A. V., Korzun, V., Roder, M. S., Borner, A. (2009). Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet., 119 (5), 867–874.10.1007/s00122-009-1095-119568730
  10. Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Murat, F., Chosson, A., Watanabe, N., Prat, E., Gautier, N., Gautier, V., Poncet, C., Orlov. Y. L., Krasnikov, A. A., Berges, H., Salina, E., Laikova, L., Salse, J. (2015). FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol., 167 (1), 189–99.10.1104/pp.114.250043
  11. Doebley, J. F., Gaut, B. S., Smith, B. D. (2006). The molecular genetics of crop domestication. Cell, 127 (7), 1309–1321.10.1016/j.cell.2006.12.00617190597
  12. Dorofeev, V.F., Korovina, O. N. (1979). Wheat. Flora of Cultivated Plants, Vol. 1. [Дорофеев В. Ф., Коровина О. Н. Культурная флора СССР. Т. 1. Пшеница.] Kolos, Leningrad. 347 pp. (in Russian).
  13. Faris, J. D., Gill, B. S. (2002). Genomic targeting and high-resolution mapping of the domestication gene. Genome, 45, 706–718.10.1139/g02-03612175074
  14. Faris, J. D., Fellers, J. P., Brooks, S. A., Gill, B. S. (2003). A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 164 (1), 311–321.10.1093/genetics/164.1.311146255812750342
  15. Franckowiack, J. D., Konishi, T. (1997). Naked caryopsis. Barley Genetics Newsletter, 26, 51–52.
  16. Gepts, P. (2004). Crop domestication as a long-term Selection Experiment. Plant Breeding, 24 (2), 1–44.
  17. Gill, B. S., Appels, R., Botha-Oberholster, A. M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., Chumley, F., Dvorak, J., Iwanaga, M., Keller, B., Li, W., McCombie, W. R., Ogihara, Y., Quetier, F., Sasaki, T. (2004). A workshop report on wheat genome sequencing: International genome research on wheat consortium. Genetics, 168 (2), 1087–1096.10.1534/genetics.104.034769144881815514080
  18. Glémin, S., Bataillon, T. (2009). A comparative view of the evolution of grasses under domestication: Tansley review. New Phytol., 183 (2), 273–290.10.1111/j.1469-8137.2009.02884.x19515223
  19. Goncharov, N. P. (1997). Comparative genetic study of tetraploid forms of common wheat without D genome. Russ. J. Genet., 33, 549–552.
  20. Goncharov, N. P., Mitina, R. L., Anfilova, N. A. (2003). Inheritance of awnlessness in tetraploid wheat species. Russ. J. Genet., 39 (4), 463–466.10.1023/A:1023326202320
  21. Goncharov, N. P., Gaidalenok, R. F. (2005). Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russ. J. Genet., 41 (11), 1262–1267.10.1007/s11177-005-0227-1
  22. Goncharov, N. P., Bannikova, S. V., Kawahara, T. (2007a). Wheat artificial amphiploids involving the Triticum timopheevii genome: Their studies, preservation and reproduction. Genet. Resour. Crop Ev., 54 (7), 1507–1516.10.1007/s10722-006-9141-1
  23. Goncharov, N. P., Kondratenko, E. Y., Bannikova, S. V, Konovalov, A. A., Golovnina, K. A. (2007b). Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession. Russ. J. Genet., 43 (11), 1248–1256.10.1134/S1022795407110075
  24. Goncharov, N. P. (2011). Genus Triticum L. taxonomy: The present and the future. Plant Syst. Evol., 295 (1), 1–11.
  25. Goncharov, N. P. (2012) Comparative Genetics of Wheats and Their Related Species. [Гончаров Н. П. Сравнительная генетика пшениц и их сородичей.] GEO, Novosibirsk. 523 pp. (in Russian).
  26. Gross, B. L., Olsen, K. M. (2010). Genetic perspectives on crop domestication. Trends Plant Sci., 15 (9), 529–537.10.1016/j.tplants.2010.05.008293924320541451
  27. Gu, X. Y., Kianian, S. F., Foley, M. E. (2004). Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics, 166 (3), 1503–1516.10.1534/genetics.166.3.1503147077115082564
  28. Hammer, K. (1984). Das Domestikationssyndrom. Die Kulturpflanze, 32 (1), 11–34.10.1007/BF02098682
  29. Haque, M. A., Takayama, A., Watanabe, N., Kuboyama, T. (2011) Cytological and genetic mapping of the gene for four-awned phenotype in Triticum carthlicum Nevski. Genet. Resour. Crop Evol.,58 (7), 1087–1093.10.1007/s10722-010-9644-7
  30. Houston, K., McKim, S. M., Comadran, J., Bonar, N., Druka, I., Uzrek, N., Cirillo, E., Guzy-Wrobelska, J., Collins, N. C., Halpin, C., Hansson, M., Dockter, C., Druka, A., Waugh, R. (2013). Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. P. Natl. Acad. Sci. USA, 110 (41), 16675–16680.10.1073/pnas.1311681110379938024065816
  31. Jantasuriyarat, C., Vales, M. I., Watson, C. J. W., Riera-Lizarazu, O. (2004). Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet., 108 (2), 261–273.10.1007/s00122-003-1432-813679977
  32. Johnson, E. B., Nalam, V. J., Zemetra, R. S., Riera-Lizarazu, O. (2008). Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica, 163 (2), 193–201.
  33. Kato, K., Miura, H., Sawada, S. (1999). QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor. Appl. Genet., 98, 472–477.10.1007/s001220051094
  34. Kerber, E. R., Rowland, G. G. (1974). Origin of the free threshing character in hexaploid wheat. Can. J. Genet. Cytol., 16 (1), 145–154.10.1139/g74-014
  35. Kimber, G., Feldman, M. (1987). Wild Wheat: An Introduction. College of Agriculture, University of Missouri-Columbia, Columbia, Mo. 146 pp.
  36. Kimber, G., Sears, E. R. (1987). Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne, E. G. (Ed.). Wheat and Wheat Improvement. 2nd edn. American Society of Agronomy, Madison, WI, pp. 154–164.10.2134/agronmonogr13.2ed.c6
  37. Klindworth, D. L., Williams, N. D., Joppa, L. R. (1990). Chromosomal location of genes for supernumerary spikelet in tetraploid wheat. Genome, 33 (4), 515–520.10.1139/g90-076
  38. Klindworth, D. L., Klindworth, M. M., Williams, N. D. (1997). Telosomic mapping of four genetic markers in durum wheat. J. Hered., 88 (3), 229–232.10.1093/oxfordjournals.jhered.a023093
  39. Komatsuda, T., Mano, Y. (2002). Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor. Appl. Genet., 105 (1), 85–90.10.1007/s00122-001-0858-012582565
  40. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T., Yano, M. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA, 104 (4), 1424–1429.10.1073/pnas.0608580104178311017220272
  41. Koppolu, R., Anwar, N., Sakuma, S., Tagiri, A., Lundqvist, U., Pourkheirandish, M., Rutten, T., Seiler, C., Himmelbach, A., Ariyadasa, R., Youssef, H. M., Stein, N., Sreenivasulu, N., Komatsuda, T., Schnurbusch, T. (2013). Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl. Acad. Sci. USA, 110 (32), 13198–203.10.1073/pnas.1221950110374084723878219
  42. Kosuge, K., Watanabe, N., Kuboyama, T., Melnik, V. M., Yanchenko, V. I., Rosova, M. A., Goncharov, N. P. (2008). Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 159 (3), 289–296.10.1007/s10681-007-9488-1
  43. Lebedeva, T. V., Rigin, B. V. (1994). Inheritance of some morphological traits, growth habit and powdery mildew resistance in cultivated einkorn Triticum monococcum L. Russ. J. Genet.,30, 1599–1604.
  44. Lenser, T., Theißen, G. (2013). Molecular mechanisms involved in convergent crop domestication. Trends in Plant Sci., 18 (12), 704–714.10.1016/j.tplants.2013.08.00724035234
  45. Lev-Yadun, S., Gopher, A., Abbo, S. (2000). The cradle of agriculture. Science, 288, 1602–1603.10.1126/science.288.5471.160210858140
  46. Li, W., Gill, B. S. (2006). Multiple genetic pathways for seed shattering in the grasses. Funct. Integr. Genom., 6 (4), 300–309.10.1007/s10142-005-0015-y16404644
  47. MacKey, J. (1954). Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas, 40, 65–180.
  48. Malinowski, E. (1914). Les hybrides du froment. Bull. del’Acad. Sci. Cracovie, Ser. B Sci. Naturalis, 3, 410–450.
  49. Maydup, M. L., Antonietta, M., Guiamet, J. J., Graciano, C., Lopez, J. R., Tambussi, E. A. (2010). The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crop. Res., 119 (1), 48–58.10.1016/j.fcr.2010.06.014
  50. Muller, K. J., Romano, N., Gerstner, O., Garcia-Maroto, F., Pozzi, C., Salamini, F., Rohde, W. (1995). The barley Hooded mutation caused by a duplication in homeobox gene intron. Nature, 374, 727–730.10.1038/374727a07715728
  51. Muramatsu, M. (1963). Dosage effect of the spelta gene q of hexaploid wheat. Genetics, 48, 469–482.10.1093/genetics/48.4.469121048617248158
  52. Nalam, V. J., Vales, M. I., Watson, C. J. W., Kianian, S. F., Riera-Lizarazu, O. (2006). Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor. Appl. Genet., 112 (2), 373–381.10.1007/s00122-005-0140-y16328232
  53. Pennell, A. L., Halloran, G. M. (1983). Inheritance of supernumerary spikelets in wheat. Euphytica, 32 (3), 767–776.10.1007/BF00042157
  54. Pourkheirandish, M., Wicker, T., Stein, N., Fujimura, T., Komatsuda, T. (2007). Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor. Appl. Genet., 114 (8), 1357–1365.10.1007/s00122-007-0522-417375281
  55. Poursarebani, N., Seidensticker, T., Koppolu, R., Trautewig, C., Gawroński, P., Bini, F., Govind, G., Rutten, T., Sakuma, S., Tagiri, A., Wolde, G. M., Youssef, H. M., Battal, A., Ciannamea, S., Fusca, T., Nussbaumer, T., Pozzi, C., Borner, A., Lundqvist, U., Komatsuda, T., Salvi, S., Tuberosa, R., Uauy, C., Sreenivasulu, N., Rossini, L., Schnurbusch, T. (2015). The genetic basis of composite spike form in barley and “miracle-wheat.” Genetics, 201 (1), 155–165.10.1534/genetics.115.176628456626026156223
  56. Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T. B., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P. M., Lundqvist, U., Franckowiak, J. D., Close, T. J., Muehlbauer, G. J., Waugh, R. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genet., 43 (2), 169–172.10.1038/ng.74521217754
  57. Rao, M. V. P. (1972). Mapping of the compactum gene C on chromosome 2D of wheat. Wheat. Inf. Serv., 35, 9.
  58. Rao, M. V. P. (1981). Telocentric mapping of the awn inhibitor gene Hd on chromosome 4B of common wheat. Cereal Res. Comm., 9, 335–337.
  59. Rebetzke, G. J., Bonnett, D. G., Reynolds, M. P. (2016). Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot., 67(9), 2573–2586.10.1093/jxb/erw081486101026976817
  60. Reynolds, M., Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. Curr. Opin. Plant Biol., 11 (2), 171–179.10.1016/j.pbi.2008.02.00518329330
  61. Rowland, G. G., Kerber, E. R. (1974). Telocentric mapping in hexaploid wheat of genes for leaf resistance and other characters derived from Aegilops squarrose. Can. J. Genet. Cytol., 16, 137–144.10.1139/g74-013
  62. Sakuma, S., Pourkheirandish, M., Matsumoto, T., Koba, T., Komatsuda, T. (2010). Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Funct. Integr. Genom., 10 (1), 123–133.10.1007/s10142-009-0134-y283477319707806
  63. Santi, L., Wang, Y., Stile, M. R., Berendzen, K., Wanke, D., Roig, C., Pozzi, C., Muller, K., Muller, J., Rohde, W., Salamini, F. (2003). The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J., 34 (6), 813–826.10.1046/j.1365-313X.2003.01767.x
  64. Sears, E. R. (1947). The sphaerococcum gene in wheat. Genetics,32, 102–103.
  65. Sears, E. R. (1954). The aneuplolds of common wheat. Missouri Agr. Exp. Sta. Res. Bull., 572, 1–58.
  66. Sears, E. R. (1966). Chromosome mapping with the aid of telocentrics. Proc. 2nd International Wheat Geneties Symposium, Hereditas Suppl.,2, 370–381.
  67. Sessa, G., Carabelli, M., Ruberti, I., Lucchetti, S., Baima, S., Morelli, G. (1994). Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. In: G. Coruzzi, P. Puigdomčnech (eds.). Plant Molecular Biology: Molecular Genetic Analysis of Plant Development and Metabolism. Springer, Berlin, Heidelberg, pp. 411–426.10.1007/978-3-642-78852-9_39
  68. Simonetti, M. C., Bellomo, M. P., Laghetti, G., Perrino, P., Simeone, R., Blanco, A. (1999). Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resour. Crop Ev., 46 (3), 267–271.10.1023/A:1008602009133
  69. Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z., Tai, Y. S., Gill, B. S., Faris, J. D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics, 172 (1), 547–555.10.1534/genetics.105.044727145618216172507
  70. Sood, S., Kuraparthy, V., Bai, G., Dhaliwal, H. S., Gill, B. S. (2007) Molecular mapping of soft glume (Sog) gene in diploid wheat. In: Abstracts of the Plant & Animal Genomes XV Conference, 13–17 January 2007, San Diego, CA, p. 282.
  71. Sood, S., Kuraparthy, V., Bai, G., Gill, B. S. (2009). The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet., 119 (2), 341–351.10.1007/s00122-009-1043-019421730
  72. Sormacheva, I., Golovnina, K., Vavilova, V., Kosuge, K., Watanabe, N., Blinov, A., Goncharov, N. P. (2015). Q gene variability in wheat species with different spike morphology. Genet. Resour. Crop Ev., 62 (6), 837–852.10.1007/s10722-014-0195-1
  73. Sweeney, M. T. (2006). Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell, 18 (2), 283–294.10.1105/tpc.105.038430135653916399804
  74. Tadesse, W., Amri, A., Ogbonnaya, F. C., Sanchez-Garcia, M., Sohail, Q., Baum, M. (2015). Wheat. In: Genetic and Genomic Resources for Grain Cereals Improvement. Academic Press, Oxford, pp. 81–124.
  75. Taenzler, B., Esposti, R. F., Vaccino, P., Brandolini, A., Effgen, S., Heun, M., Schafer-Pregl, R., Borghi, B., Salamini, F. (2002). Molecular linkage map of Einkorn wheat: Mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet. Res., 80 (2), 131–143.10.1017/S001667230200575X12534216
  76. Takahashi, R., Hayashi, J. (1964). Linkage study of two complementary genes for brittle rachis in barley. Berichte des Ohara Instituts, 12, 99–105.
  77. Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S., Takeda, K. (2008). Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA, 105 (10), 4062–4067.10.1073/pnas.0711034105226881218316719
  78. Taketa, S., Kikuchi, S., Awayama, T., Yamamoto, S., Ichii, M., Kawasaki, S. (2004). Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor. Appl. Gen., 108, 1236–1242.10.1007/s00122-003-1560-114727032
  79. Taketa, S., Yuo, T., Yamashita, Y., Ozeki, M., Haruyama, N., Hidekazu, M., Kanamori, H., Matsumoto, T., Kakeda, K., Sato, K. (2013). Molecular mechanisms for covered vs. naked caryopsis in barley. In: Advance in Barley Sciences, Proceedings of 11th International Barley Genetics Symposium, Zhejiang, China, pp. 453–460.
  80. Unrau, J. (1950). The use of monosomes and nullisomes in cytogenetic studies of common wheat. Sci. Agri.,30, 66–89.
  81. Watanabe, N., Ikebata, N. (2000). The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica, 115 (3), 215–220.10.1023/A:1004066416900
  82. Watanabe, N., Sugiyama, K., Yamagishi, Y., Sakata, Y. (2002). Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas, 137, 180–185.10.1034/j.1601-5223.2002.01609.x
  83. Watkins, A. E. (1930). Wheat species. J. Gen., 23, 173.
  84. Yu, S., Long, H., Deng, G., Pan, Z., Liang, J., Zeng, X., Tang, Y., Tashi, N., Yu, M. (2016). A single nucleotide polymorphism of nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol. Biol. Rep., 34 (1), 242–248.10.1007/s11105-015-0911-9
  85. Zhang, Z., Belcram, H., Magdelenat, G., Couloux, A., Samain, S., Gill, S., Rasmussena, J. B., Barbed, V., Faris, J. D., Huneau, C. (2011). Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl. Acad. Sci. USA, 108 (46), 18737–18742.10.1073/pnas.1110552108321914822042872
DOI: https://doi.org/10.1515/prolas-2016-0053 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 345 - 355
Submitted on: Aug 19, 2016
Published on: Mar 1, 2017
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Irina Konopatskaia, Valeriya Vavilova, Alexandr Blinov, Nikolay P. Goncharov, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.