Have a personal or library account? Click to login
Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana Cover

Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

Open Access
|Aug 2016

References

  1. Agarwal, A., Singh, K. P., Jain, A. (2010). Medical significance and management of staphylococcal biofilm. FEMS (Federation of European Microbiological Societies) Immunol. Med. Microbiol. 58, 147-160.
  2. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocompositesfor tissue engineering: A review. Polymer Degrad. Stability, 95 (11), 2126-2146.10.1016/j.polymdegradstab.2010.06.007
  3. Belcarz, A., Ginalska, G., Zalewska, J., Rzeski, W., Slósarczyk, A., Kowalczuk, D., Godlewski, P., Niedêwiadek, J. (2009). Covalent coating of hydroxyapatite by keratin stabilizes gentamicin release. J. Biomed. Mater. Res. B. Appl. Biomater., 89 (1), 102-113.10.1002/jbm.b.31192
  4. Busscher, H. J., van der Mei, H. C., Subbiahdoss, G., Jutte, P. C., van den Dungen, J. J. A. M., Zaat, S. A. J., Schultz, M. J., Grainger, D. W. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med., 4 (153), 153rv10.
  5. Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510-514.10.1016/j.bioeng.2007.08.001
  6. Christner, M., Franke, G. C., Schommer, N. N., Wendt, U., Wegert, K., Pehle, P., Kroll, G., Schulze, C., Buck, F., Mack, D., Aepfelbacher, M., Rohde, H. (2010). The giantextracellularmatrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol., 75, 187-207.10.1111/j.1365-2958.2009.06981.x
  7. Costerton, J. W., Stewart, P. S., Greenberg, E. P. (1999). Bacterial biofilms: Acommon cause of persistent infections. Science, 284 (5418), 1318-1322.
  8. Cunha, B. A. (2001). Nosocomial pneumonia. Diagnostic and therapeutic considerations. Med. Clin. North Amer., 85 (1), 79-114.10.1016/S0025-7125(05)70305-9
  9. Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Inf., 5, (13), 1213-1219.10.1016/j.micinf.2003.08.00914623017
  10. Grainger, D. W., van der Mei, H. C., Jutte, P. C., van den Dungen, J. J., Schultz, M. J., van der Laan, B. F., Zaat, S. A., Busscher, H. J. (2013). Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 34 (37), 9237-9343.10.1016/j.biomaterials.2013.08.04324034505
  11. Guo, Y. J., Long, T., Chen, W., Ning, C., Zhu, Z. A., Guo, Y. P. (2013). Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater. Sci. Eng. C. Mater. Biol. Appl., 33 (7), 3583-3591.10.1016/j.msec.2013.04.02123910253
  12. Harmsen, M., Yang, L., Pamp, S. J., Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa bioflm formation, tolerance, and dispersal. FEMS Immunol Med. Microbiol., 59, 253-268.10.1111/j.1574-695X.2010.00690.x20497222
  13. Hetrick, E. M., Schoenfisch, M. H. (2006). Reducing implant-related infections: Active release strategies. Chem. Soc. Rev., 35 (9), 780-789.10.1039/b515219b16936926
  14. Hodgson, S. D., Greco-Stewart, V., Jimenez, C. S., Sifri, C. D., Brassinga, A. K. C., Ramirez-Arcos, S. (2014). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion, 54 (2), 461-470.
  15. Hoiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O., Kharazmi, A. (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Inf., 3 (1), 23-35.10.1016/S1286-4579(00)01349-6
  16. Jaiswal, S., Bhattacharya, K., McHale, P., Duffy, B. (2015). Dual effects of _-cyclodextrin-stabilised silver nanoparticles: Enhanced biofilm inhibition and reduced cytotoxicity. J. Mater. Sci. Mater. Med., 26 (1), 536710.1007/s10856-014-5367-125596861
  17. Jr. Pruitt, B. A., McManus, A. T., Kim, S. H., Goodwin, C. W. (1998). Burn wound infections: Current status. World J. Surg., 22, 135-145.10.1007/s0026899003619451928
  18. Kiedrowski, R. M., Horswill, A. R. (2011). New approaches for treating staphylococcal biofilm infections. Ann. NY Acad. Sci., 1241, 104-121.10.1111/j.1749-6632.2011.06281.x22191529
  19. Lepretre, S., Chai, F., Hornez, J. C., Vermet, G., Neut, C., Descamps, M., Hildebrand, H. F., Martel, B. (2009). Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials, 30, 6086-609310.1016/j.biomaterials.2009.07.04519674778
  20. Li, Z., Kong, W., Li, X., Xu, C., He, Y., Gao, J., Ma, Z., Wang, X., Zhang, Y., Xing, F., Li, M., Liu, Y.. Antibiotic-containing biodegradable bead clusters with porous PLGA coating as controllable drug-releasing bone fillers. J. Biomater. Sci. Polym. Ed., 22 (13), 1713-173110.1163/092050610X52160320836923
  21. Locs, J., Zalite, V., Berzina-Cimdina, L., Sokolova, M. (2013). Ammonium hydrogen carbonate provided viscous slurry foaming - a novel technology for the preparation of porous ceramics. J. Eur. Ceram. Soc., 33, 3437-3443.10.1016/j.jeurceramsoc.2013.06.010
  22. McCann, M. T., Gilmore, B. F., Gorman, S. P. (2008). Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol., 60, 1551-1571.10.1211/jpp/60.12.000119000360
  23. Meurice, E., Leriche, A., Hornez, J. C., Bouchart, F., Rguiti, E., Boilet, L., Descampsa, M., Cambier, F. (2012). Functionalisation of porous hydroxyapatite for bone substitutes. J. Eur. Ceram. Soc., 32, 2673-2678.10.1016/j.jeurceramsoc.2012.01.014
  24. O’Gara, J. P, Humphreys, H. (2001). Staphylococcus epidermidis biofilms: Importance and implications. J. Med. Microbiol., 50 (7), 582-587.10.1099/0022-1317-50-7-58211444767
  25. Peel, T. N., Cheng, A. C., Buising, K. L., Choong, P. F. (2012). The microbiological aetiology, epidemiology and clinical profile of prosthetic joint infections: Are current antibiotic prophylaxis guidelines effective? Antimicrob. Agents Chemother., 56, 2386-2391.10.1128/AAC.06246-11
  26. Pritchard, E. M., Valentin, T., Panilaitis, B., Omenetto, F., Kaplan, D. L. (2013). Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv. Funct. Mater., 23 (7), 854-861.10.1002/adfm.201201636
  27. Reinis, A., Pilmane, M., Stunda, A., Vetra, J., Kroica, J., Rostoka, D., Salms, G., Vostroilovs, A., Dons, A., Berzina-Cimdina, L. (2010). An in vitro and in vivo study on the intensity of adhesion and colonization by Staphylococcus epidermidis and Pseudomonas aeruginosa on originally synthesized biomaterials with different chemical composition and modified surfaces and their effect on expression of TNF- á, â-defensin 2 and IL-10 in tissues. Medicina, 47 (10), 560-565.
  28. Ruckh, T. T., Oldinski, R. A., Carroll, D. A., Mikhova, K., Bryers, J. D., Popat., K. C. (2012). Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J. Mater. Sci. Mater. Med., 23 (6), 1411-1420.10.1007/s10856-012-4609-3
  29. Sampedro, M. F., Piper, K. E., McDowell, A., Patrick, S., Mandrekar, J. N., Rouse, M. S., Steckelberg, J. M., Patel, R. (2009). Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn. Microbiol. Infect. Dis., 64 (2), 138-145
  30. Sokolova, M., Putniòð, A., Kreicbergs, I., Loès, J. (2014). Scale-up of wet precipitation calcium phosphate synthesis. Key Eng. Mater., 604, 216-219.10.4028/www.scientific.net/KEM.604.216
  31. von Eiff, C., Peters G., Heilmann, C. (2002). Pathogenesis of infections due to coagulase- negative staphylococci. Lancet Inf. Dis., 2 (11), 677-685.10.1016/S1473-3099(02)00438-3
  32. Xiong, M. H., Bao, Y., Yang, X. Z., Zhu, Y. H., Wang, J. (2012). Delivery of antibiotics with polymeric particles. Adv. Drug Delivery Rev., 78 (30), 63-76.
  33. Xu, Q., Czernuszka, J. T. (2008). Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. J. Control Release, 128 (2), 146-15310.1016/j.jconrel.2008.01.01718325617
  34. Yuehuei, H. A., Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Appl. Biomater., 43, 338-348.
  35. Zeller, V., Ghorbani, A., Strady, C., Leonard, P., Mamoudy, P., Desplaces, N. (2007). Propionibacterium acnes: An agent of prosthetic joint infection and colonization. J. Infect., 55, 119-124.10.1016/j.jinf.2007.02.00617418419
  36. Zimmerli, W., Trampuz, A., Ochsner, P. E. (2004). Prosthetic-joint infections. New Engl. J. Med., 351 (16), 1645-1654.10.1056/NEJMra04018115483283
DOI: https://doi.org/10.1515/prolas-2016-0035 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 220 - 226
Submitted on: Dec 4, 2015
|
Published on: Aug 4, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 Juta Kroiča, Ingus Skadiņš, Ilze Salma, Aigars Reinis, Marina Sokolova, Dagnija Rostoka, Natālija Bērza, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.