Have a personal or library account? Click to login
Manufacturing of amber particles suitable for composite fibre melt spinning Cover

References

  1. Agarwal, L., Isar, J., Meghwanshi, G. K., Saxena, R. K. (2007). Influence of environmental and nutritional factors on succinic acid production and enzyme of reverse tricarboxylic acid cycle from Enterococcus flavescens Enzym. Microb. Tech., 40 (4), 629-636.10.1016/j.enzmictec.2006.05.019
  2. Archambault, J. C., Bonte, F., Cauchard, J. H. (2008). FR. Patent No. 2911779.
  3. Barletta, E., Wandelt, K. (2011). High resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber. J. Non-Cryst. Solids, 357 (5), 1473-1478.10.1016/j.jnoncrysol.2010.12.039
  4. Beck, C. W., Wilbur, E., Meret, S. (1964). Infra-red spectra and the origin of amber. Nature, 201 (4916), 256-257.
  5. Brody, R. H., Edwards, H. G. M. (2001). A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim. Acta, Part A, 57, 1325-1338.10.1016/S1386-1425(01)00387-0
  6. Chen, S. W., Xin, Q., Kong, W. X., Min, L., Li, J. (2003). Anxiolytic-like effect of succinic acid in mice. Life Sci., 73 (25), 3257-3264.10.1016/j.lfs.2003.06.017
  7. Dastjerdi, R., Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 79 (1), 5-18.10.1016/j.colsurfb.2010.03.029
  8. Dunlop, J. A. (2006). Baltic amber harvestman types (Arachnida: Opiliones: Eupnoi and Dyspnoi). Fossil Record - Mitteilungen aus dem Museum für Naturkunde, 9 (2), 167-182.10.1002/mmng.200600006
  9. Fasahat, F., Dastjerdi, R., Mojtahedi, M. R. M., Hoseini, P. (2015). Wear properties of high speed spun multi-component PA6 nanocomposite fabrics; abrasion resistance mechanism of nanocomposites. Wear, 322, 117-125.10.1016/j.wear.2014.10.019
  10. Grimalt, J. O., Simoneit, B. R. T., Hatcher, P. G., Nissenbaum, A. (1988). The molecular composition of ambers. Org. Geochem., 13 (4), 677-690.10.1016/0146-6380(88)90089-7
  11. Hazelwood, T. L. (2001). Can’t Live Without it: The Story Haemoglobin in Sickness and in Health. Nova Science Publishing Inc, New York. 226 pp.
  12. Ibanes, C., David, L., De Boissieu, M., Séguéla, R., Epicier, T., Robert, G. (2004). Structure and mechanical behavior of nylon-6 fibres filled with organic and mineral nanoparticles. I. Microstructure of spun and drawn fibres. J. Polym. Sci., Part B: Polym. Phys., 42 (21), 3876-3892.
  13. Ibanes, C., Boissieu, M. de, David, L., Seguela, R. (2006). High temperature behaviour of the crystalline phases in unfilled and clay-filled nylon 6 fibres. Polymer, 47 (14), 5071-5079.
  14. Lambert, J. B., Frye, J. S. (1982). Carbon functionalities in amber. Science, 217 (4554), 55-57.
  15. Ïaðenko, I. (2014). Dzintara ceļš-Latvijas nākotne pasaulē [Lyashenko, I. Amber Way: Towards the Future of Latvia in the World]. MantoPrint, Riga. 225 pp. (in Latvian).
  16. Sprudza, D., Lasenko, I., Roga, S., Meirena, V., Bozileva, E. (2009). Assessment of harmlessness of modified amber powder tissues serviette. In: Rīgas Stradiņa Universitātes Zinātniskie Raksti. 7. sēj. [Research Papers of Rīga Stradiņš University. Vol. 7], Rīga, pp. 70-78.
  17. Synoradzki, L., Arct, J., Safarzynski, S., Hajmowicz, H., Sobiecka, A., Dankowska, E. (2012). Characteristics and application of Baltic amber in pharmaceutical and cosmetic industries. Przemysl Chemiczny, 91 (1), 89-94.
  18. Matuszewska, A., John, A. (2004). Some possibilities of thin layer chromatographic analysis of the molecular phase of Baltic amber and other natural resins. Acta Chromatogr., 14, 82-91.
  19. Mie, Y., Kishita, M., Nishiyama, K., Taniguchi, I. (2008). Interfacial electron transfer kinetics of myoglobins chemically modified with succinic anhydride at an indium oxide electrode. J. Electroanal. Chem., 624 (1-2), 305-309.10.1016/j.jelechem.2008.06.028
  20. Mills, J. S., White, R., Gough, L. J. (1984). The chemical composition of Baltic amber. Chem. Geol., 47 (1-2), 15-39.10.1016/0009-2541(84)90097-4
  21. Pakutinskiene, I., Kiuberis, J., Bezdicka, P., Senvaitiene, J., Kareiva, A. (2007). Analytical characterization of Baltic amber by FTIR, XRD and SEM. Canad. J. Anal. Sci. Spectroscopy, 52 (5), 287-294.
  22. Pastorelli, G. (2011).Acomparative study by infrared spectroscopy and optical oxygen sensing to identify and quantify oxidation of Baltic amber in different ageing conditions. J. Cult. Herit, 12 (2), 164-168.10.1016/j.culher.2010.11.002
  23. Pastorelli, G., Richter, J., Shashoua, Y. (2011). Photoageing of Baltic amber: Influence of daylight radiation behind window glass on surface colour and chemistry. Polym. Degrad. Stab., 96 (11), 1996-2001.10.1016/j.polymdegradstab.2011.08.013
  24. Pastorelli, G., Shashoua, Y., Richter, J. (2013). Hydrolysis of Baltic amber during thermal ageing-an infrared spectroscopic approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 124-128.10.1016/j.saa.2012.12.072
  25. Pastorelli, G., Shashoua, Y., Richter, J. (2013). Surface yellowing and fragmentation as warning signs of depolymerisation in Baltic amber. Polym. Degrad. Stab., 98 (11), 2317-2322.10.1016/j.polymdegradstab.2013.08.009
  26. Penning, J. P., Ruiten, J. van, Brouwer, R., Gabriëlse, W. (2003). Orientation and structure development in melt-spun Nylon-6 fibres. Polymer, 44 (19), 5869-5876.10.1016/S0032-3861(03)00535-4
  27. Ragazzi, E., Roghi, G., Giaretta, A., Gianolla, P. (2003). Classification of amber based on thermal analysis. Thermochimica Acta, 404 (1-2), 43-54.10.1016/S0040-6031(03)00062-5
  28. Schäfer, K. (1999). Melt spinning: technology. In: Karger-Kocsis, J. Polypropylene. Springer, Netherlands, pp. 440-445.10.1007/978-94-011-4421-6_61
  29. Synoradzki, L., Arct, J., Safarzynski, S., Hajmowicz, H., Sobiecka, A., Dankowska, E. (2012). Characteristics and application of Baltic amber in pharmaceutical and cosmetic industries. Przemysl Chemiczny, 91 (1), 89-94.
  30. Thrall, M. A., Baker, D. C., Lassen, E. D. (2004). Veterinary Hematology and Clinical Chemistry. Lippincot Williams & Wilkins, Philadelphia. 618 pp.
  31. Tonidandel, L., Ragazzi, E., Traldi, P. (2009). Mass spectrometry in the characterization of ambers. II. Free succinic acid in fossil resins of different origin. Rapid Commun. Mass Spectrom., 23 (3), 403-408.
  32. Utracki, L. A. (2006). Fibres from polymeric nanocomposites. Indian J. Fibre Text. Res., 31 (1), 15-28.
  33. Valeria, M. (1968). The analysis of archeological amber and amber from the Baltic Sea by thin-layer chromatography. J. Chromatogr. A, 33, 24-28.
  34. Valeria, M., Roberto, S. (1985). Correlations between Baltic amber and Pinus resins. Phytochem., 24, 12-17.
  35. Yamamoto, S., Otto, A., Krumbiegel, G., Simoneit, B. R. T. (2006). The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany. Rev. Palaeobot. Palynol., 140 (1-2), 27-49.10.1016/j.revpalbo.2006.02.002
  36. Zhao, J., Ragazzi, E., McKenna, G. B. (2013). Something about amber: Fictive temperature and glass transition temperature of extremely old glasses from copal to Triassic amber. Polymer, 54 (26), 7041-7047. 10.1016/j.polymer.2013.10.046
DOI: https://doi.org/10.1515/prolas-2016-0007 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 51 - 57
Submitted on: Mar 7, 2016
Published on: Jun 15, 2016
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 Inga Ļ Ļašenko, Sergejs Gaidukovs, Jūlija Rombovska, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.