Have a personal or library account? Click to login
Combined Effects of 50 Hz Electromagnetic Field and SiO2 Nanoparticles on Oxidative Stress in Plant’s Gametic Cells / Zemfrekvences (50 Hz) Elekromagnētiskā Lauka Un SiO2 Nanodaļiņu Kombinētā Ietekme Uz Augu Gametisko Šūnu Oksidatīvo Stresu Cover

Combined Effects of 50 Hz Electromagnetic Field and SiO2 Nanoparticles on Oxidative Stress in Plant’s Gametic Cells / Zemfrekvences (50 Hz) Elekromagnētiskā Lauka Un SiO2 Nanodaļiņu Kombinētā Ietekme Uz Augu Gametisko Šūnu Oksidatīvo Stresu

Open Access
|Sep 2015

References

  1. Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15-28.10.1088/0957-4484/13/5/201
  2. Bargmann, B. O. R., Birnbaum, K. D. (2009). Positive fluorescent selection permits preside, rapid and in-depth overexpression analysis in plant protoplasts. Plant Physiol., 149, 1231-1239.10.1104/pp.108.133975264941419168642
  3. Barnabįs, B. (2003). Protocol for producing doubled haploid plants from anthers culture of wheat Triticum aestivum L.). In: Maluszymski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 65-70.)10.1007/978-94-017-1293-4_11
  4. Campos-Ramos, A., Aragon-Pina, A., Alastuey, A., Galindo-Estrada, I., Querol, X. (2011). Levels, compositions and source apportionment of rural background PM10 in western Mexico (State of Colima). Atmosph. Poll. Res., 2, 409-417.10.5094/APR.2011.046
  5. Carter, A. D., Bonyadi, R., Miriam, L., Gifford, (2013). The use of fluorescence- activated cell sorting in studying plant development and environmental responses. J. Dev. Biol., 57, 545-552.10.1387/ijdb.130195mg24166437
  6. Cui, Y., Ge, Z., Rizak, J. D., Zhai, C., Zhou, Z., Gong, S., Che, Y. (2012). Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS One, 7, e32196.10.1371/journal.pone.0032196334307722570685
  7. Cvetkovic, D., Cosic, I. (2009). Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures. Med. Biol. Eng. Comput., 47, 1063-1073.10.1007/s11517-009-0525-119707808
  8. Deligiannakis, Y., Sotiriou, G. A., Pratsinis, S. E. (2012). Antioxidant and antiradical SiO2 nanoparticles covalently funtionalized with gallic acid. ASC Apl. Mater. Interfases, 6609-6617.10.1021/am301751s23121088
  9. Dimkpa, C. O., McLean, J. E., Latta, D .E., Manangó, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012). CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res., 14 (9), 1-15.10.1007/s11051-012-1125-9
  10. Djaković, T., Jovanoviã, Z., (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulg. J. Plant Physiol. Special Issue, 264-272.
  11. Dožel, J., Greilhuber, J., Suda, J., (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda, J. (eds.). Flow Cytometry With Plant Cells. WILEY-VCH Verlag, GmbH&Co, KGaA, pp. 41-65.
  12. Eom, H.-J., Choi, J. (2011). SiO2 nanoparticles induced cytotoxity by oxidative stress in human bronchial epithelial cell, Beas-2b. Available at: http://dx.dol.org/10.5620/eht.2011.26.e201013.
  13. Espinosa, J. M., Liberti, M., Lagroye, I., Veyret, B. (2006). Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes. Bioelectromagnetics, 27, 414-422.10.1002/bem.2022516607621
  14. Jacquard, C., Nolin, F., Hécart, C., Grauda, D., Rashal, I., Dhondt-Cordelier, S., Sangwan, R. S., Devaux, P., Mazeyrat-Gourbeyre, F., Clément, C. (2009). Microspore embryogenesis and programmed cell death in barley: Effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep., 28, 1329-1339.10.1007/s00299-009-0733-z19529940
  15. Hoecke, K. V., Quik, J. T. K., Mankiewicz-Boczek, J., Schamphelaere, K. A. C. D., Elsaesser, A., Meeren, P. V. der, Barnes, C., Howard, C. V., Meent,D. V. D., Rydzynski, K., Dawson, K. A., Salvati, A., Lesniak, A., Silversmit, G., Samber, B. D., Vincze, L., Janssen, C. R. (2009). Fate and Effects of CeO2 Nanoparticles in aquatic ecotoxicity tests. Environ. Sci. Technol., 43 (12), 4537-4546.10.1021/es900244419603674
  16. Galbraith, D.W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65-70.10.7705/biomedica.v30i0.824
  17. Grauda, D., Miķelsone, A., Ïisina, N., Þagata, K., Ornicāns, R., Fokina, O., Lapiņa, L., Rashal, I. (2014). Anther culture effectiveness in producing doubled haploids of cereals. Proc. Latvian Acad. Sci. Section B, 68 (3/4), 142-147.
  18. Kalteh, M., Zarrin, T. A., Shahram, A., Maryam, M. A., Alireza, F. N. (2014). Effect of silica nanoparticles on Basil (Ocimum basili-cum) under salinity stress. J. Chem. Health Risks, 4 (3), 49-55.
  19. Kan, A. T., Tomson, M. B. (1999). Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem., 9, 253-263.10.1002/etc.5620090302
  20. Karim, Z., Adnan, R., Ansari, M. S., (2012). Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. PLoS ONE, 7 (7); e41422.10.1371/journal.pone.0041422340720722848490
  21. Kasha, K. J., Simon, E., Oro, R., Shim, Y. S., (2003). Barley isolated microspore culture protocol. In: Maluszynski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. A. Manual. Kluwer Acad. Publ., Dordrecht, Boston, London, pp. 43-47.10.1007/978-94-017-1293-4_7
  22. Kimura, H., (2005). Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst.), 4, 939-950.10.1016/j.dnarep.2005.04.01215905138
  23. Kokina, I., Sļedevskis, Ç., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarāne I., Pigiņka I., Filipoviès M., Rashal I. (2013). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of mediumby carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66 (415), 220-209.
  24. Lin W., Huang Y., Zhou X.-D., Ma, Y. (2006). In vitro toxity of silica nanoparticles in human lang cancer cells. Tox. Appl. Pharm., 217, 252-259.10.1016/j.taap.2006.10.00417112558
  25. Lin, D., Xing, B., (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Poll., 150, 243-250.10.1016/j.envpol.2007.01.01617374428
  26. Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A., (2010), Interaction between engineered nananoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053-3061.
  27. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15, 473-497.10.1111/j.1399-3054.1962.tb08052.x
  28. Martinez, M. M., Reif, R. D., Pappas, D. (2010). Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal. Bioanal. Chem., 396, 1177-1185.10.1007/s00216-009-3298-3
  29. Nabais, C., Feritas, H., Hagemeyer, J. (1999). Dendroanalysis: A tool for biomonitoring environmental pollution. Sci. Total Environ., 232 (1-2), 33-37.10.1016/S0048-9697(99)00107-2
  30. Nawrocka, H., Poniedzialek, B., Jaroszyk, F., Wiktorowicz, K. (2006). Effects of low intensity magnetic fields and red light on respiratory burst of neutrophils. Pol. J. Environ. Stud., 15 (4), 28-30.
  31. Neumann, M., Gabel, D., (2002). Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem., 50 (3), 437-439.10.1177/002215540205000315
  32. Noda, Y., Mori, A., Liburdy, R. P., Packer, L. (2000). Magnetic fields and lipoic acid influence the respiratory burst in activated rat peritoneal neutrophils. Pathophysiology, 7, 137-141.10.1016/S0928-4680(00)00041-9
  33. Nowack B., Bucheli T. D. (2007). Occurrence, behavior and effects of nanopaecicles in the environment. Environ. Poll., 150, 5-22.10.1016/j.envpol.2007.06.006
  34. Piancentini, M. P., Piatti, E., Fraternale, D., Ricci, D., Albertini, M. C., Accorsi, A. (2004). Phospholipase C-dependent phosphoinositide breakdown induced by ELF-EMF in Paganum harmala calli. Biochimie, 86 (4-5), 343-349.10.1016/j.biochi.2004.02.001
  35. Reijnders, L. (2012). Hazards of TiO2 and amorphous SiO2 nanoparticles. In: Toxic Effects of Nanomaterials. Kahan, H. A, Arif, I. A. (eds.). Bentham Science Publishers, pp. 85-96.10.2174/978160805283711201010085
  36. Roy, S., Noda, Y., Eckert, V., Traber, M. G., Mori, A., Liburdy, R., Packer, L. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1mT (60 Hz) magnetic field. FEBS Lett., 376,164-166.10.1016/0014-5793(95)01266-X
  37. Siddiqui, M. H., Al-Whaibi M. H., Firoz M., Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. In: Nanotechnology and Plant Sciences. Siddiqui, M. H., Al-Whaibi M. H., Firoz (eds.). Springer International Publishing AG, Switzerland, pp. 19-36.10.1007/978-3-319-14502-0_2
  38. Simkó, M. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr. Med. Chem., 14 (10), 1141-1152.10.2174/09298670778036283517456027
  39. Shabrangi, A., Majd, A., Sheidai, M., Nabyouni, M., Dorranian D. (2010). Comparing effects of extremely low frequency electromagnetic fields on the biomass weight of C3 and C4 plants in early vegetative growth. In: Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010. Cambridge, pp. 593-598.
  40. Van Hoecke, K., De Schamphelaere, K. A. C., Vander Meeren, P., Licas, S., Janssen, C. R., (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem., 27, 410-420.
  41. Vigneswaran, N., Koh, S., Gillenwater, A., (2009). Incidental detection of an occult oral malignancy with autofluorescence imaging: A case report. Head Neck Oncol., 1 (37), available at: www.headandneckoncology.org/conten/1/1/37.
  42. Veliu, A., Syla, A., (2008). Air pollution with particulate matter and heavy metals of Kosova thermal power plant. J. Int. Environ. Appl. Sci., 3 (4), 280-287.
  43. Wang, J., Pui, D. Y. H., (2011). Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road. J. Phys. Conference Series, 304 (012008), 1-14.10.1088/1742-6596/304/1/012008
  44. Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X., Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. (China), 22 (1), 155-60.10.1016/S1001-0742(09)60087-5
  45. Yilmaz, S., Zengin, M. (2004). Monitoring environmental pollution in Erzurum by chemical analysis of Scott pine (Pinus sylvestris L.) needles. Environ. Int., 29, 1041-1047.10.1016/S0160-4120(03)00097-7
  46. You, M. K., Lim, S.-H., Kim, M.-J., Jeong, Y.S., Lee, M.-G., Ha, S.-H., (2015). Improvement of the fluorescence intensity during a flow cytometric analysis for rice protoplasts by localization of a green fluorescent protein into chloroplasts. Int. J. Mol. Sci., 16, 788-804.
DOI: https://doi.org/10.1515/prolas-2015-0012 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 82 - 86
Submitted on: May 18, 2015
Published on: Sep 30, 2015
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2015 Dace Grauda, Anton Kolodynski, Inta Belogrudova, Lada Bumbure, Isaak Rashal, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.