1. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N. European Uremic Toxin Work Group. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 2005; 20: 1048-1056.10.1093/ndt/gfh813
2. Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006; 17: 2034-2047.10.1681/ASN.2005101085
3. Astor BC, Hallan SI, Miller ER 3rd, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and allcause mortality in the US population. Am J Epidemiol 2008; 167: 1226-1234.10.1093/aje/kwn033
4. Hemmelgarn BR, Manns BJ, Lloyd A, et al. Alberta Kidney Disease Network. Relation between kidney function, proteinuria, and adverse outcomes. JAMA 2010; 303: 423-429.10.1001/jama.2010.39
5. Weiner DE, Tighiouart H, Elsayed EF, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 2007; 50: 217–224.10.1016/j.jacc.2007.03.037
6. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003; 64: 2272–2279.10.1046/j.1523-1755.2003.00328.x
7. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79: 1370–1378.10.1038/ki.2011.47
8. Mace ML, Gravesen E, Hofman-Bang J, et al. Key role of the kidney in the regulation of fibroblast growth factor 23. Kidney Int 2015; 88: 1304–1313.10.1038/ki.2015.231
9. Zanchi C, Locatelli M, Benigni A, et al. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor. PLoS One 2013; 8: e70775.10.1371/journal.pone.0070775
10. Spichtig D, Zhang H, Mohebbi N, et al. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int 2014; 85: 1340–1350.10.1038/ki.2013.526
12. Hu MC, Shiizaki K, Kuro-o M, et al: Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75: 503–533. Stubbs et al; Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 20: 302–308, 2007.10.1146/annurev-physiol-030212-183727
13. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359: 584–592.10.1056/NEJMoa0706130
15. Isakova T, Xie H, Yang W, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 2011; 305: 2432–2439.10.1001/jama.2011.826
19. Arnlov J, Carlsson AC, Sundstrom J, et al. Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int 2013; 83: 160–166.10.1038/ki.2012.327
20. Foley RN, Curtis BM, Randell EW, Parfrey PS. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol 2010; 5: 805-813.10.2215/CJN.07761109
22. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009; 119: 2545–2552.10.1161/CIRCULATIONAHA.108.844506
23. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009; 207: 546–551.10.1016/j.atherosclerosis.2009.05.013
24. Hsu HJ, Wu MS. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 2009; 337: 116-122.10.1097/MAJ.0b013e3181815498
25. Kirkpantur A, Balci M, Gurbuz OA, et al. Serum fibroblast growth factor-23 (FGF-23) are independently associated with left ventricular mass and myocardial performance index in maintenance hemodialysis patients. Nephrol Dial Transplant 2011; 26: 1346-1354.10.1093/ndt/gfq539
26. Shibata K, Fujita S, Morita H, et al. Association between circulating fibroblast growth factor-23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass index in cardiology inpatients. PLoS One 2013; 8: e73184.10.1371/journal.pone.0073184
27. Scialla JJ, Xie H, Rahman M, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol 2014; 25:349-360.10.1681/ASN.2013050465
30. Leifheit-Nestler M, Große Siemer R, Flasbart K, et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant 2016; 31: 1088–1099.10.1093/ndt/gfv421
32. Hagel M, Miduturu C, Sheets M, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov 2015; 5: 424-437.10.1158/2159-8290.CD-14-1029
33. Touchberry CD, Green TM, Tchikrizov V, et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab 2013; 304: E863-E873.10.1152/ajpendo.00596.2012
34. Mehta R, Cai X, Lee J, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease. JAMA Cardiol 2016; 1: 548-556.10.1001/jamacardio.2016.1445
35. Meng L, Yang Y, Zhang Z, Li G, Liu T. Predictive value of circulating fibroblast growth factor-23 on atrial fibrillation: A meta-analysis. Int J Cardiol 2016; 210: 68-71.10.1016/j.ijcard.2016.02.100
36. Mirza M, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009; 205: 385–390.10.1016/j.atherosclerosis.2009.01.001
37. Yilmaz MI, Sonmez A, Saglam M, et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 2010; 78: 679–685.10.1038/ki.2010.194
38. Yilmaz M, Sonmez A, Saqlam M, et al: Longitudinal analysis of vascular function and biomarkers of metabolic bone disorders before and after renal transplantation. Am J Nephrol 2013; 37: 126–134.10.1159/000346711
39. Yilmaz M, Sonmez A, Saqlam M, et al. A longitudinal study of inflammation, CKD-mineral bone disorder, and carotid atherosclerosis after kidney transplantation. Clin J Am Soc Nephrol 2015; 10: 471-479.10.2215/CJN.07860814
40. Mirza MA, Hansen T, Johansson L, et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant 2009; 24: 3125-3131.10.1093/ndt/gfp205
41. Mizobuchi M, Towler D, Slatopolski E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephron 2009; 20: 1453-1464.10.1681/ASN.2008070692
42. Roos M, Lutz J, Salmhofer H, et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multisclice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf) 2008; 68: 660-665.10.1111/j.1365-2265.2007.03074.x
43. Cancela AL, Santos RD, Titan SM, et al. Phosphorus is associated with coronary artery disease is patients with preserved renal function. PLoS One 2012; 7: e36883.10.1371/journal.pone.0036883
44. Xiao Y, Peng C, Huang W, et al. Circulating fibroblast growth factor 23 is associated with angiographic severity and extent of coronary artery disease. PLoS One 2013; 8: e72545.10.1371/journal.pone.0072545
45. Kanbay M, Nicoleta M, Selcoki Y, et al. Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin J Am Soc Nephrol 2010; 5: 1780-1786.10.2215/CJN.02560310
46. Coen G, De Paolis P, Ballanti P, et al. Peripheral artery calcifications evaluated by histology correlate to those detected by CT: relationships with fetuin-A and FGF-23. J Nephrol 2011; 24: 313–321.10.5301/JN.2010.5818
47. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant. 2010 Aug;25(8):2679–2685.10.1093/ndt/gfq089
48. Lindberg K, Olauson H, Amin R, et al. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS One 2013; 8: e60658.10.1371/journal.pone.0060658
49. Jimbo R, Kawakami-Mori F, Mu S, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int 2014; 85: 1103-1111.10.1038/ki.2013.332
50. Scialla JJ, Lau WL, Reilly MP, et al; Chronic Renal Insufficiency Cohort Study Investigators. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 2013; 83: 1159-1168.10.1038/ki.2013.3
51. Hsu JJ, Katz R, Ix JH, et al. Association of fibroblast growth factor-23 with arterial stiffness in the Multi-Ethnic Study of Atherosclerosis. Nephrol Dial Transplant 2014; 29: 2099-2105.10.1093/ndt/gfu101
52. Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 2014; 6: 744-759.10.1002/emmm.201303716
53. Andrukhova O, Smorodchenko A, Egerbacher M, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 2014; 33: 229-246.10.1002/embj.201284188
54. Andrukhova O, Slavic S, Zeitz U, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol 2014; 28: 53-64.10.1210/me.2013-1252
55. de Borst MH, Vervloet MG, ter Wee PM, Navis G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol 2011; 22: 1603-1609.10.1681/ASN.2010121251
57. Yilmaz MI, Saglam M, Caglar K, et al. The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am J Kidney Dis 2006; 47: 42–50.10.1053/j.ajkd.2005.09.029
58. Bai Y, Sun L, Du L, et al. Association of circulating levels of asymmetric dimethylarginine (ADMA) with carotid intima-media thickness: Evidence from 6168 participants. Ageing Res Rev 2013; 12: 699–707.10.1016/j.arr.2012.02.003
61. David V, Martin A, Isakova T, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 2016; 89: 135–146.10.1038/ki.2015.290
63. Munoz Mendoza J, Isakova T, Cai X, et al; CRIC Study Investigators. Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney International 2017; 91: 711–719.10.1016/j.kint.2016.10.021