Have a personal or library account? Click to login
Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma Cover

Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma

Open Access
|Nov 2016

References

  1. 1. Azoury SC, Lange JR. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am. 2014; 94(5): 945–62.10.1016/j.suc.2014.07.01325245960
  2. 2. Boyers LN, Karimkhani C, Naghavi M et al. Global mortality from conditions with skin manifestations. J Am Acad Dermatol. 2014; 71(6): 1137–1143.10.1016/j.jaad.2014.08.02225282129
  3. 3. Berwick M, Wiggins C. The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006; 11: 1244–54.10.2741/187716368510
  4. 4. Thrift AP, Whiteman DC. Can we really predict risk of cancer? Cancer Epidemiol. 2013; 37(4): 349–52.10.1016/j.canep.2013.04.00223643191
  5. 5. DeVita VT. RS, Hellman S. Cancer: Principle and Practice of Oncology. 7th ed: Lippncott Williams & Wilkins; 2004.
  6. 6. Iles MM, Bishop DT, Taylor JC, GenoMEL Consortium. The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst 2014; 106(10). pii: dju267.
  7. 7. Tucker MA, Goldstein AM. Melanoma etiology: where are we? Oncogene 2003; 22(20): 3042–52.
  8. 8. Chang C, Murzaku EC, Penn L et al. More skin, more sun, more tan, more melanoma. Am J Public Health. 2014; 104(11): e92–9.10.2105/AJPH.2014.302185420294725211764
  9. 9. Svobodova A, Zdarilova A, Maliskova J et al. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J Dermatol Sci. 2007; 46(1): 21–30.10.1016/j.jdermsci.2006.12.00917289350
  10. 10. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011; 164(4): 776–84.10.1111/j.1365-2133.2010.10185.x21166657
  11. 11. Liu J, Fukunaga-Kalabis M, Li L et al. Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. 2014; 563C: 13–21.10.1016/j.abb.2014.07.023422138325109840
  12. 12. Carlino MS, Todd JR, Gowrishankar K et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol Oncol. 2014; 8(3): 544–54.10.1016/j.molonc.2014.01.003552864424476679
  13. 13. Tomei S, Bedognetti D, De Giorgi V et al. The immune-related role of BRAF in melanoma. Mol Oncol 2015; 9(1): 93–104.10.1016/j.molonc.2014.07.014450079225174651
  14. 14. Conrad WH, Swift RD, Biechele TL et al. Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/β-catenin activation. Cell Cycle. 2012; 11(20): 3724–30.10.4161/cc.21645349581422895053
  15. 15. Rojas AM, Fuentes G, Rausell A et al. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196(2): 189–201.10.1083/jcb.201103008326594822270915
  16. 16. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011; 3(14): 1787–808.10.4155/fmc.11.121334764122004085
  17. 17. Gysin S, Salt M, Young A et al. Therapeutic strategies for targeting ras proteins. Genes Cancer 2011; 2(3): 359–72.10.1177/1947601911412376312864121779505
  18. 18. Martin-Liberal J, Larkin J. New RAF kinase inhibitors in cancer therapy. Expert Opin Pharmacother. 2014; 15(9): 1235–45.10.1517/14656566.2014.91128624766074
  19. 19. Mandalà M, Voit C. Targeting BRAF in melanoma: biological and clinical challenges. Crit Rev Oncol Hematol. 2013; 87(3): 239–55.10.1016/j.critrevonc.2013.01.00323415641
  20. 20. Yajima I, Kumasaka MY, Thang ND et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signali ng in Malignant Melanoma Progression and Therapy. Dermatol Res Pract. 2012; 2012: 354191.10.1155/2012/354191319530522013435
  21. 21. Nogueira C, Kim KH, Sung H et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene. 2010; 29(47): 6222–32.10.1038/onc.2010.349298933820711233
  22. 22. Scatolini M, Grand MM, Grosso E et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010; 126(8): 1869–81.10.1002/ijc.2489919795447
  23. 23. Jakob JA, Bassett RL Jr, Ng CS et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012; 118(16): 4014–23.10.1002/cncr.26724331096122180178
  24. 24. Rozenberg GI, Monahan KB, Torrice C et al. Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation Melanoma Res. 2010; 20(5): 361–71.
  25. 25. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445(7130): 851–7.10.1038/nature0566117314971
  26. 26. Haydn JM, Hufnagel A, Grimm J et al. The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget. 2014; 5(13): 5040–53.10.18632/oncotarget.2079414812024970815
  27. 27. Witkiewicz AK, Knudsen KE, Dicker AP et al. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011; 10(15): 2497–503.10.4161/cc.10.15.16776368561321775818
  28. 28. Conde-Perez A, Larue L. Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol. 2014; 93(1–2): 82–6.10.1016/j.ejcb.2013.10.01024342721
  29. 29. Wilson W, Merlino G. Flipping the phenotypic switch on novel antimelanoma differentiation strategy. Pigment Cell Melanoma Res. 2013; 26(6):791–3.10.1111/pcmr.12160639697724152043
  30. 30. Leachman SA, Carucci J, Kohlmann W et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009; 61(4): 677. e1–14.10.1016/j.jaad.2009.03.016330779519751883
  31. 31. Oikonomou E, Koustas E, Goulielmaki M et al. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014; 5(23): 11752–77.10.18632/oncotarget.2555432298525361007
  32. 32. Kumar R, Angelini S, Snellman E, et al. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122(2): 342–8.10.1046/j.0022-202X.2004.22225.x15009715
  33. 33. Bauer J, Curtin JA, Pinkel D et al. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007; 127(1): 179–82.10.1038/sj.jid.570049016888631
  34. 34. Albino AP, Fountain JW. Molecular genetics of human malignant melanoma. Cancer Treat Res. 1993; 65:201–55.10.1007/978-1-4615-3080-0_88104022
  35. 35. Demunter A, Stas M, Degreef H et al. Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol. 2001; 117(6): 1483–9.10.1046/j.0022-202x.2001.01601.x11886512
  36. 36. Omholt K, Karsberg S, Platz A et al. Screening of N-ras Codon 61 Mutations in Paired Primary and Metastatic Cutaneous Melanomas: Mutations Occur Early and Persist throughout Tumor Progression. Clin Cancer Res. 2002; 8(11): 3468–74.
  37. 37. Bradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol. 2014; 45(7): 1315–26.10.1016/j.humpath.2014.04.00124856851
  38. 38. Abschuetz O, Osen W, Frank K et al. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma. Cancers (Basel). 2012; 4(2): 490–503.10.3390/cancers4020490371269624213320
  39. 39. Mar VJ, Wong SQ, Li J et al. BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage. Clin Cancer Res. 2013; 19(17): 4589–98.10.1158/1078-0432.CCR-13-039823833303
  40. 40. Jiveskog S, Ragnarsson-Olding B, Platz A et al. N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Invest Dermatol. 1998; 111(5): 757–61.10.1046/j.1523-1747.1998.00376.x9804334
  41. 41. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892): 949–54.10.1038/nature0076612068308
  42. 42. Cruz F 3rd, Rubin BP, Wilson D et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003; 63(18): 5761–6.
  43. 43. Bastian BC, LeBoit PE, Hamm H et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998; 58(10): 2170–5.
  44. 44. Curtin JA, Stark MS, Pinkel D et al. PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol. 2006; 126(7): 1660–3.10.1038/sj.jid.570031116614723
  45. 45. Omholt K, Krockel D, Ringborg U et al. Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 2006; 16(2): 197–200.10.1097/01.cmr.0000200488.77970.e316567976
  46. 46. Chudnovsky Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest. 2005; 115(4): 813–24.10.1172/JCI24808107043515841168
  47. 47. Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004; 64(19): 7002–10.10.1158/0008-5472.CAN-04-139915466193
  48. 48. Held L, Eigentler TK, Metzler G et al. Proliferative activity, chromosomal aberrations, and tumor-specific mutations in the differential diagnosis between blue nevi and melanoma. Am J Pathol. 2013; 182(3): 640–5.10.1016/j.ajpath.2012.11.01023261261
  49. 49. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003; 22(20): 3113–22.10.1038/sj.onc.120645112789288
  50. 50. Pollock PM, Walker GJ, Glendening JM et al. PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res. 2002; 12(6): 565–75.10.1097/00008390-200212000-0000612459646
  51. 51. Stahl JM, Cheung M, Sharma A et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003; 63(11): 2881–90.
  52. 52. Stewart AL, Mhashilkar AM, Yang XH et al. PI3 kinase blockade by Ad-PTEN inhibits invasion and induces apoptosis in RGP and metastatic melanoma cells. Mol Med. 2002; 8(8): 451–61.10.1007/BF03402025
  53. 53. Tsao H, Zhang X, Fowlkes K et al. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 2000; 60(7): 1800–4.
  54. 54. Isabel ZY, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol. 2006; 33(1): 33–7.10.1111/j.0303-6987.2006.00420.x16441409
  55. 55. Willmore-Payne C, Layfield LJ, Holden JA. c-KIT mutation analysis for diagnosis of gastrointestinal stromal tumors in fine needle aspiration specimens. Cancer. 2005; 105(3): 165–70.10.1002/cncr.2106415822120
  56. 56. Fukuda R, Hamamoto N, Uchida Y et al. Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med. 2001; 40(4): 301–3.10.2169/internalmedicine.40.30111334388
  57. 57. Curtin JA, Busam K, Pinkel D et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006; 24(26): 4340–6.10.1200/JCO.2006.06.298416908931
  58. 58. Cachia AR, Indsto JO, McLaren KM et al. CDKN2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res. 2000; 6(9): 3511–5.
  59. 59. Grafstrom E, Egyhazi S, Ringborg U et al. Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res. 2005; 11(8): 2991–7.10.1158/1078-0432.CCR-04-173115837753
  60. 60. Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006; 6(9): 663–73.10.1038/nrc195416915296
  61. 61. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007; 17(1): 31–9.10.1016/j.gde.2006.12.00517208430
DOI: https://doi.org/10.1515/prilozi-2016-0021 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 89 - 97
Published on: Nov 23, 2016
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Sofija Pejkova, Gjorgje Dzokic, Smilja Tudzarova-Gjorgova, Sasho Panov, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.