Have a personal or library account? Click to login

Pharmacogenetics and Antipsychotic Treatment Response/ Фармакогенетски Тестирања И Одговор Кон Третман Со Антипсихотоци

Open Access
|Jun 2015

References

  1. 1 Gasteira, A., Barros. F., Martin, A., et al. Pharmacogenetic studies on antipsychotic treatment. Current status and perspectives. Actas Esp Psiquiate. 2010; 38(5): 301-16.
  2. 2. Murray CJL, Lopez AD. The Global Burden Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1999 and Projected to 20120. Cambridge, MAA, Harvard University Press, 1996.
  3. 3. Citrome L. Interpreting and Applying the CATIE Results: With CATIE, context is key, when sorting out Phases 1, 1A, 1B, 2E, and 2T. Psychiatry (Edgmont). 2007; 4(10): 23-29.
  4. 4. Johansen E, Jorgensen A.H. Effectiveness of second generation antipsychotics. A systemic review of randomized trials. BMC Psychiatry. 2008; 8: 31.10.1186/1471-244X-8-31238645718439263
  5. 5. Arranz JM, Perez V, Gutierrez B, Hervas A, Pharmacogenetic Applications of Pharmacogenomic Approaches in Schizophrenia. Curr Genet Med Rep. 2013; 1: 58-64.10.1007/s40142-012-0006-y
  6. 6. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005; 353(12): 1209-23.10.1056/NEJMoa05168816172203
  7. 7. Fervaha G, Agid O, Takeuchi H, Foussias G, Remington G. Effect of antipsychotic medication on overall life satisfaction among individuals with chronic schizophrenia: findings from the NIMH CATIE study. Eur Neuropsychopharmacol. 2014; 24(7): 1078-85.10.1016/j.euroneuro.2014.03.00124726579
  8. 8. Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open Journal of Psychiatry. 2013; 3: 46-139.9.10.4236/ojpsych.2013.31008
  9. 9. Xie HG, Kim RB, Wood AJ and Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annual Reviews, Pharmacology and Toxicology. 2001; 41: 815-850.10.1146/annurev.pharmtox.41.1.81511264478
  10. 10. Nakajima M, Yokoi T, Mizutani M, et al. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo). 1999; 125: 803- 808.10.1093/oxfordjournals.jbchem.a02235210101295
  11. 11. Chida M, Yokoi T, Fukui T, et al. Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res. 1999; 90: 899-902.10.1111/j.1349-7006.1999.tb00832.x592616510551315
  12. 12. Sachse C, Brockmoller J, Bauer S, and Roots I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999; 47: 445-449.10.1046/j.1365-2125.1999.00898.x201423310233211
  13. 13. Kootstra-Ros JE, Smallegoor W, and van der Weide J. The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem. 2005; 42: 216-219.10.1258/000456305385779815949157
  14. 14. Aklillu E, Carrillo JA, Makonnen E, et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol. 2003; 64: 659-669.10.1124/mol.64.3.659
  15. 15. Van der Weide J, Steijns LS, van Weelden, MJ. The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics. 2003; 13: 169-72.10.1097/00008571-200303000-00006
  16. 16. Arranz JM and Kapur S. Pharmacogenetics in Psychiatry: Are we ready for widespread clinical use? Schizophrenia Bulletin. 2008; 6 34.: 1130-44.10.1093/schbul/sbn114
  17. 17. Mahgoub A, Idle JR, Dring DG, Polymorphic hydroxylation of debrisoquine in man. Lancet. 1977; 2: 584-586.
  18. 18. Tucker GT, Silias JH, Iyun AO, Lennard MS, Smith AJ. Polymorphic hydroxylation of debrisoquine. Lancet. 1977; 2: 718.10.1016/S0140-6736(77)90527-X
  19. 19. Kirchheiner J, Nickcen K, Bauer M, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to phenotype of drug response. Mol Psychiatry. 2004; 9: 442-473.10.1038/sj.mp.4001494
  20. 20. Igelman-Sundberg M. Genetic polimorphisms of cytochrome P4502D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005; 5: 6-13.10.1038/sj.tpj.6500285
  21. 21. Agundez, J., Ledesma, M., Ladero, J et al., Prevalence of CYP2D6 gene duplication and repercussion on oxidative phenotype in a white population. Clinical Pharmacol Ther. 1994; 57: 265-269.10.1016/0009-9236(95)90151-5
  22. 22. de Leon J. The AmpliChip CYP450 Test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn. 2006; 6: 277-286.10.1586/14737159.6.3.27716706732
  23. 23. Vandel P, Haffen E, Vandel S, et al. Drug extrapyramidal side effects. CYP2D6 genotypes and phenotypes. Eur J Clin Pharmacol. 1999; 55(9): 659-665.10.1007/s00228005068910638395
  24. 24. Jaanson P, Marandi T, Kiivet RA, et al. Maintenance therapy with zuclopentixol decanoate: association between plasma concentrations, neurological side effects and CYP2D6. Psychopharmacology (Berl). 2002; 162(1): 67-73.10.1007/s00213-002-1059-512107620
  25. 25. Schillevoort I, de Boer A, van der Weide J, Steijns LS, et al. Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a casecontrol study. Pharmacogenetics. 2002; 12(3): 235-40.10.1097/00008571-200204000-0000811927839
  26. 26. Bork J, Rogers T, Wedlund P, de Leon J. A pilot study of risperidone metabolism: the role of cytochrome P450 2D6 ultrarapid metabolizer (letter). J. Clin Psychiatry. 1999; 60: 469-76.10.4088/JCP.v60n0709
  27. 27. De Leon J, Susce MT, Pan RM, Fairchild M, Koch W, Wedlund PJ. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry. 2005; 66: 15-27.10.4088/JCP.v66n0103
  28. 28. Kato, D., Kawanishi, C., Kishida, I et al., Effects of CYP2D6 polymorphisms on neuroleptic malignant syndrome. Eur. J. Clin Pharmacol. 63; 11: 991-996 2007.10.1007/s00228-007-0355-817701031
  29. 29. Schuetz JD, Beach DL, and Guzelian PS. (1994) Selective expression of cytochrome P-450 CYP3AmRNAs in embryonic and adult human liver. Pharmacogenetics. 1994; 4: 11-20.10.1097/00008571-199402000-000028004129
  30. 30. Lacroix D, Sonnier M, Moncion A, Cheron G, and Cresteil T. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997; 247: 625-634.10.1111/j.1432-1033.1997.00625.x9266706
  31. 31. Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity I the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002; 30: 383-391.10.1124/dmd.30.10.110812228187
  32. 32. Dai D, Tang J, Rose R, et al., Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chloropyrifos. J. Pharmacolo Exp Ther. 2001; 299: 825-831.
  33. 33. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A4 protomers and characterization of genetic basis of polymorphic CYP3A5 expression. Net Genet. 2001; 27 (4): 383-391.10.1038/8688211279519
  34. 34. van Schaik RH, de Wildt SN, van Iperen NM, et al. CYP3A4-Vpolymorphism detection by PCRrestriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin Chem. 2000; 46: 1834-6.10.1093/clinchem/46.11.1834
  35. 35. van Schaik RH, de Wildt SN, Brosens R, et al. The CYP3A4*3allele: is it really rare? Clin Chem. 2001; 47: 1104-6.
  36. 36. Wang A, Yu BN, Luo CH, et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipidlowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur J Clin Pharmacol. 2005; 60: 843-8.10.1007/s00228-004-0848-715650881
  37. 37. van Schaik RH, van der Heiden IP, van den Anker JN, and Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem. 2002; 48: 1668-71.10.1093/clinchem/48.10.1668
  38. 38. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I,Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999; 39: 361-98.10.1146/annurev.pharmtox.39.1.361
  39. 39. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. Control Release. 1999; 62: 25-31.10.1016/S0168-3659(99)00034-6
  40. 40. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphism of the human multidrug-resistance gene: multiple sequence variations and correlations of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000; 97: 3473-3478.10.1073/pnas.97.7.34731626410716719
  41. 41. Nakamura T, Sakaeda T, Horinouchi M, Tamura T, Aoyama N, Schirakawa T, et al. Effect of the mutation (C3435T) et exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther. 2002; 71: 297-303.10.1067/mcp.2002.12205511956513
  42. 42. Nikisch G, Eap CB and Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008; 58: 344-347.10.1016/j.phrs.2008.09.01018940259
  43. 43. Uhr M, Grauer MT, Yassouridis A and Ebinger M. Blood-brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res. 2007; 41: 179-188.10.1016/j.jpsychires.2005.10.00516387324
  44. 44. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, et al. CYP2D6 and ABCB1 genetic variability: Influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008; 30: 474-482.10.1097/FTD.0b013e31817d6f5d18641553
  45. 45. Loscher W and Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther. 2002; 301: 7-14.10.1124/jpet.301.1.711907151
  46. 46. Moons T, de Roo M, Claes S and Dom G. Relationship between P-glycoprotein and second generation antipsychotics. Pharmacogenomics. 2011; 12(8): 1193-211.10.2217/pgs.11.5521843066
  47. 47. Nakagami T, Yasui-Furukori N, Saito M, et al. Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: in vivo evidence of involvement of P-glycoprotein in risperidone disposition. Clin Pharmacol Ther. 2005; 78: 43-51.10.1016/j.clpt.2005.03.00916003291
  48. 48. Wang D, Johnson AD, Papp AC, Kroetz DE and Sade´e W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005; 15: 693-704.10.1097/01.fpc.0000178311.02878.83
  49. 49. Verstuyft C, Schwab M, Schaeffeler E, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol. 2003; 58: 809-812. 10.1007/s00228-003-0567-512698307
  50. 50. Mickley LA, Lee JS, Weng Z, et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood. 1998; 91: 1749-1756.10.1182/blood.V91.5.1749
  51. 51. Morita Y, Sakaeda T, Horinouchi M, et al. MDR1 genotype-related duodenal absorption rate of digoxin in healthy Japanese subjects. Pharmacol Res. 2003; 20: 552-526.10.1023/A:1023282312757
  52. 52. Horinouchi M, Sakaeda T, Nakamura T, et al. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharmacol Res. 2002; 19: 1581-1585.10.1023/A:1020433422259
  53. 53. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther. 2002; 72: 584-594.10.1067/mcp.2002.12919612426522
  54. 54. Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001; 69: 169-174.10.1067/mcp.2001.11416411240981
  55. 55. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A ‘‘silent’’ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007; 315: 525-528.10.1126/science.113530817185560
  56. 56. Xiang Q, Zhao X, Zhou Y, Duan JL, Cui YM. Effect of CYP2D6, CYP3A5, and MDR1genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J. Clin. Pharmacol. 2010; 50(6): 659-666.
  57. 57. Jovanović N, et al. The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with firstepisode schizophrenia treated with risperidone. Eur J Clin Pharmacol. 2010; 66: 1109.10.1007/s00228-010-0850-120563569
  58. 58. Shinkai T, De Luca V, Utsunomiya K, et al. Functional polymorphism of the human multidrug resistance gene (MDR1) and polydipsia-hyponatremia in schizophrenia. Neuromolecular Med. 2008; 10(4): 362-367.10.1007/s12017-008-8041-218543120
  59. 59. Xing Q, Gao R, Li H, et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics. 2006; 7(7): 987-993 (2006).10.2217/14622416.7.7.98717054409
  60. 60. Suzuki, Y., Tsuneyama, N., Sugai, T., Watanabe, J., Ono, S., Saito, M., Someya, T. Impact of the ABCB1 gene polymorphism on plasma 9-hydroxyrisperidone and active moiety levels in Japanese patients with schizophrenia. J Clin Pharmacol. 2013 Jun; 33(3): 411-4.10.1097/JCP.0b013e31828ecd5223609388
  61. 61. Skogh, E., Sjodin, I., Josefsson, M., Dahl, M.L. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. Clin Psychopharmaciol. 2011; Feb; 31(1): 4-9.10.1097/JCP.0b013e318204d9e221192135
  62. 62. Lin, Y.C., Ellingrod, V.L., Bishop, J.R., Miller, D.D. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit. 2006; 28(5): 668-72.10.1097/01.ftd.0000246761.82377.a617038883
  63. 63. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L. Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res. 2008; 42(2): 89-97.10.1016/j.jpsychires.2006.10.00217113599
  64. 64. Kuzman, M.R., Medvedev, V., Bozina, N., Grubisin, J., Jovanovic, N., Sertic, J. Association study of MDR1 and 5-HT2C genetic polymorphisms and antipsychotic- induced metabolic disturbances in female patients with schizophrenia. Pharmacogenomics J. 2011 Feb; 11(1): 35-44.10.1038/tpj.2010.720195292
  65. 65. Nyberg S, Eriksson B, Oxenstierna G, Halldin C, and Farde L. Suggested minimal effective dose of risperidone based on PET measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry. 1999; 156: 869-75.10.1176/ajp.156.6.86910360125
  66. 66. 4-25 25. Zai CC, et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007; 12: 794.10.1038/sj.mp.400202317767146
  67. 67. Lencz T, Robinson DG, Napolitano B, et al. DRD2 promoter region variation predicts antipsychoticinduced weight gain in first episode schizophrenia. Pharmacogenet. Genomics. 2010; 20(9): 569-572.
  68. 68. Yasui-Furukori N, Tsuchimine S, Saito M, et al. Comparing the influence of dopamine D2 polymorphisms and plasma drug concentrations on the clinical response to risperidone. J. Clin. Psychopharmacol. 2011; 31(5): 633-637.10.1097/JCP.0b013e31822c09a721869689
  69. 69. Kishida I, Kawanishi C, Furano T, Kato D, Ischigami TM and Kosaka K. Association in Japanese patients between neuroleptic malignant syndrome and functional polymorphisms of dopamine D (2) receptor gene. Mol Psyhiatry. 2004; 9(3): 293-8.10.1038/sj.mp.4001422
  70. 70. Arinami T, Gao M, Hamaguchi H, Toru M, A functional polymorphism in the promoter region of dopamine D2 receptor gene in association with schizophrenia. Hum Mol Genet. 1997; 6: 577-582.10.1093/hmg/6.4.577
  71. 71. Lane HY, Lee CC, Change YC, et al. Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int J Neuropsychopharmacol. 2004; 7: 461-470.10.1017/S1461145704004389
  72. 72. Hedenmalm K, Guzey C, Dahl ML, Yue QY, and Spigset O. Risk factors for extrapyramidal symptoms during treatment with selective serotonin reuptake inhibitors, including cytochrome P-450 enzyme, and serotonin and dopamine transporter and receptor polymorphisms. J Clin Psychopharmacol. 2006; 26: 192-7.10.1097/01.jcp.0000203200.96205.34
  73. 73. Guzey C, Scordo MG, Spina E, Landsem VM, and Spigset O. Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and tran sporter polymorphisms. Eur J Clin Pharmacol. 2007; 63: 233-41.10.1007/s00228-006-0234-8
  74. 74. Furukori N. Clinical pharmacogenetics in the treatment of schizophrenia. Nihon Shinkei Seishin Yakurigaku Zasshi. 2010; 30(2): 65-69.
  75. 75. Jonsson EG, Nothen MM, Grunhage F, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999; 4: 290-6.10.1038/sj.mp.4000532
  76. 76. Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997; 7: 479-84.10.1097/00008571-199712000-00006
  77. 77. Xing Q, Qian X, Li H, et al. The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. Int J Neuropsychopharmacol. 2007; 10(5): 631-7.10.1017/S146114570600719X
  78. 78. Lencz T, Robinson DG, Xu K, et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry. 2006; 163(3): 529-31.10.1176/appi.ajp.163.3.529
  79. 79. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, and Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998; 779(1-2): 58-74.10.1016/S0006-8993(97)01078-0
  80. 80. Bakker PR, van Harten PN, Van Os J. Antipsychoticinduced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta-analysis. Schizophr Res. 2006; 83: 185-92.10.1016/j.schres.2006.01.010
  81. 81. Lerer, B., Segman, R. H., Fangerau, H, et al. Pharmacogenetics of tardive dyskinesia. Combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology. 2002; 27: 105-119.10.1016/S0893-133X(02)00293-2
  82. 82. Zai, C.C., Tiwari, A.K., Basile, V., De Luca, V., Muller, H.Y., Liberman, J.A, et al. Association study of tardive dyskinesia and five DRD4 polymorphisms in schizophrenia patients. Journal of Pharmacogenomics. 2009; 9: 168-174.10.1038/tpj.2009.2
  83. 83. Wang L, Fang C, Zhang A, et al. The 1019 C/G polymorphism of the 5-HT(1)A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J. Psychopharmacol. 2008; 22(8): 904-909.10.1177/0269881107081522
  84. 84. Mössner R, Schuhmacher A, Kühn KU, et al. Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet. Genomics. 2009; 19(1): 91-94.
  85. 85. Pompeiano M, Palacios JM, and Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res. 1994; 23: 163-78.10.1016/0169-328X(94)90223-2
  86. 86. Roth BL, Sheffl er DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004; 3(4): 353-9.10.1038/nrd1346
  87. 87. Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, and Makoff AJ. The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry. 2004; 56: 406-1010.1016/j.biopsych.2004.06.020
  88. 88. Spurlock G, Heils A, Holmans P, et al. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry. 1998; 3: 42-9.10.1038/sj.mp.4000342
  89. 89. Ozaki N, Manji H, Lubierman V, et al. A naturally occurring amino acid substitution of the human serotonin 5-HT2A receptor influences amplitude and timing of intracellular calcium mobilization. J Neurochem. 1997; 68: 2186-93.10.1046/j.1471-4159.1997.68052186.x
  90. 90. Arranz MJ, Munro J, Sham P, et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res. 1998; 32: 93-99.10.1016/S0920-9964(98)00032-2
  91. 91. Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int J Psychiatry Med. 2007; 37: 315-329.10.2190/PM.37.3.h
  92. 92. Arranz MJ, Collier D, Sodhi M, et al. Association between clozapine response and allelic variation in 5- HT2A receptor gene. Lancet. 1995; 346: 281-2.10.1016/S0140-6736(95)92168-0
  93. 93. Lattuada E, Cavallaro R, Serretti A, Lorenzi C, and Smeraldi E. Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. Int J Neuropsychopharmacol. 2004; 7(4): 489-93.10.1017/S1461145704004614
  94. 94. Polesskaya OO, Aston C, Sokolov BP. Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. J Neurosci Res. 2006; 83(3): 362-73.10.1002/jnr.20732
  95. 95. Clemett DA, Punhani T, Duxon MS, Blackburn TP, and Fone KC. Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology. 2000; 39: 123-32.10.1016/S0028-3908(99)00086-6
  96. 96. Marazziti D, Rossi A, Giannaccini G, et al. Distribution and characterization of 3H.mesulergine binding in human brain postmortem. Eur Neuropsychopharmacol. 1999; 10: 21-6.10.1016/S0924-977X(99)00045-0
  97. 97. Yuan X, Yamada K, Ishiyama-Shigemoto S, Koyama W, and Nonaka K. Identification of polymorphic loci in the promoter region of the serotonin 5- HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia. 2000; 43: 373-6.10.1007/s001250050056
  98. 98. Hill MJ and Reynolds GP. 5-HT(2C) receptor gene polymorphisms associated with antipsychotic drug action alter promoter activity. Brain Res. 2007. 10.1016/j.brainres.2007.02.038
  99. 99. Reynolds GP, Zhang ZJ, and Zhang XB. Association of antipsychotic drug-induced weight gain with a 5- HT2C receptor gene polymorphism. Lancet. 2002; 359: 2086-7.10.1016/S0140-6736(02)08913-4
  100. 100. De Luca V, Mueller DJ, de Bartolomeis A, and Kennedy JL. Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol. 2007; 10: 697-704.10.1017/S146114570700754717291373
  101. 101. Ryu S, Cho EY, Park T, et al. -759 C/T polymorphism of 5-HT2C receptor gene and early phase weight gain associated with antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007; 31: 673-7.10.1016/j.pnpbp.2006.12.02117275977
  102. 102. Templeman LA, Reynolds GP, Arranz B, and San L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first episode psychosis. Pharmacogenet Genomics. 2005; 15: 195-200.10.1097/01213011-200504000-0000215864111
  103. 103. Wallace JMT, Zai CC, Muller JC. Role of 5-HT2C receptor gene variant in antipsychotic-induced weight gain. Pharmacogenetics and Personalized Medicine. 2011; 4: 83-93.
  104. 104. McCarthy S, Mottagui-Tabar S, Mizuno Y, et al. Complex HTR2C linkage disequilibrium and promoter associations with body mass index and serum leptin. Hum Genet. 2005; 117: 545-57.10.1007/s00439-005-1328-616021472
  105. 105. Zhang ZJ, Zhang XB, Sha WW, Zhang XB, and Reynolds GP. Association of a polymorphism in the promoter region of the serotonin5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry. 2002; 7: 670-1.10.1038/sj.mp.400105212192608
  106. 106. Okada M, Northup JK, Ozaki N, et al. Modification of human 5- HT(2C) receptor function by Cys23Ser, an abundant, naturally occurring amino-acid substitution. Mol Psychiatry. 2004; 9: 55-64.10.1038/sj.mp.400135714699441
  107. 107. Fentress HM, Grinde E, Mazurkiewicz JE, et al. Pharmacological properties of the Cys23Ser single nucleotide polymorphism in human 5-HT2C receptor isoforms. Pharmacogenomics J. 2005; 5: 244- 54.10.1038/sj.tpj.650031515912142
  108. 108. Sodhi MS, Arranz MJ, Curtis D, et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport. 1995; 7: 169-72.10.1097/00001756-199512000-00041
  109. 109. Segman RH, Heresco-Levy U, Finkel B, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl). 2000; 152: 408-13.10.1007/s00213000052111140333
  110. 110. Drago A, and Serretti A. Focus on HTR2C: a possible suggestion for genetic studies of complex disorders. Am J Med Geneti B Neuropsyhiatr Genet. 2009; 105B (5): 601-637.10.1002/ajmg.b.3086418802918
  111. 111. Lane HY, Liu YC, Huang CL, et al. Risperidonerelated weight gain: genetic and nongenetic predictors. J. Clin. Psychopharmacol. 2006; 26(2), 128-134.
  112. 112. Lane HY, Lin CC, Huang CH, Chang YC, Hsu SK, Chang WH. Risperidone response and 5-HT6 receptor gene variance: genetic association analysis with adjustment for nongenetic confounders. Schizophr. Res. 2004; 67(1), 63-70.
  113. 114. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Cristal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J. Neuropsychiatr. Clin. Neuroscience. 1997; 9(1): 1-17.
  114. 115. Mata I, Arranz MJ, Patiño A, et al. Serotonergic polymorphisms and psychotic disorders in populations from north Spain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2004; 126B(1): 88-94.10.1002/ajmg.b.2015015048655
  115. 116. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol. Psychiatry. 2007; 12(8): 707-747.
  116. 117. Dolzan V, Serretti A, Mandelli L, Koprivsek J, Kastelic M, Plesnicar BK. Acute antipyschotic efficacy and side effects in schizophrenia: association with serotonin transporter promoter genotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008; 32(6): 1562-1566.
  117. 118. Llerena A, Berecz R, Penes-Lledo E, and Ferinas H. Pharmacogenetics of clinical response to risperidone. Pharmacogenomics. 2013; 14(2): 177-194.10.2217/pgs.12.20123327578
  118. 119. Liperoti R, Onder G, Landi F, et al. All-cause mortality associated with atypical and conventional antipsychotics among nursing home residents with dementia: a retrospective cohort study. J. Clin. Psychiatry. 2009; 70(10): 1340-1347.
  119. 120. Wang L, Yu L, He G, et al. Response of risperidone treatment may be associated with polymorphisms of HTT gene in Chinese schizophrenia patients. Neuroscience Letters. 2004; 414: 1-4.10.1016/j.neulet.2006.09.01417287080
  120. 121. Srivastava V, Varma PG, Prasad S, et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics. 2006; 16: 111-117.10.1097/01.fpc.0000184957.98150.0f16424823
  121. 122. Weickert TW, Goldberg TE, Mishara A, et al. Catechol-Omethyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry. 2004; 56: 677-68210.1016/j.biopsych.2004.08.01215522252
  122. 123. Yamanouchi Y, Iwata N, Suzuki T, Kitajima T, Ikeda M, Ozaki N. Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J. 2003; 3(6): 356-361.10.1038/sj.tpj.650021114610521
  123. 124. Kang CY, Xu XF, Shi ZY, Yang JZ, Liu H, Xu HH. Interaction of catechol-Omethyltransferase (COMT) Val108/158 Met genotype and risperidone treatment in Chinese Han patients with schizophrenia. Psychiatry Res. 2010; 176(1): 94-95.10.1016/j.psychres.2009.02.00920053459
  124. 125. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimaki T, and Leinonen E. Interaction between NOTCH4 and catechol- O-methyltransferase geno types in schizophrenia patients with poor response to typical neuroleptics. Pharmacogenetics. 2004; 14: 303-307.10.1097/00008571-200405000-0000515115916
  125. 126. Shoval G, and Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur. Neuropsychopharmacol. 2005; 15(3); 319-329.10.1016/j.euroneuro.2004.12.00515820422
  126. 127. Pröschel M, Saunders A, Roses AD, Müller CR. Dinucleotide repeat polymorphism at the human gene for brain-derived neurotrophic factor (BDNF). Hum. Mol. Genet. 1992; 1(5): 353.
  127. 128. Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat. Genet. 1999; 22(3): 231-238.
  128. 129. Kunugi H, Ueki A, Otsuka M, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol. Psychiatry. 2001; 6(1): 83-86.
  129. 130. Lenez T, Lipisky RH, DeRosse P, Burdick KE, Kane JM and Malhotra AK. Molecular differentiation of schizoactive disorder from schizophrenia using BDNF haplotypes. The British Journal of Psychiatry. 2009; 194: 313-318.10.1192/bjp.bp.108.050401266496919336781
  130. 131. Nikolac Perkovic M, Nedic Erjavec G, Zivkovic M, Sagud M, Uzun S, Mihaljevic-Peles, et al. Association between the brain-derived neurotropic factor Val66Met polymorphism and therapeutic response to olanzapine in schizophrenia patients. Psychopharmacology (Berl). 2014; Epub ahead of print..10.1007/s00213-014-3515-424595507
  131. 132. Szczepankiewicz A, Skibinska M, Czerski PM, et al. No association of the brain-derived neurotrophic factor (BDNF) gene C-270T polymorphism with schizophrenia. Schizophr. Res. 2005; 76(2-3): 187-193.10.1016/j.schres.2005.02.00615949651
  132. 133. Xu M, Li S, Xing Q, et al. Genetic variants in the BDNF gene and therapeutic response to risperidone in schizophrenia patients: a pharmacogenetic study. Eur. J. Hum. Genet. 2010; 18(6): 707-712.
  133. 134. Campbell DB, Ebert PJ, Skelly T, et al. Ethnic stratification of the association of RGS4 variants with antipsychotic treatment response in schizophrenia. Biol Psychiatry. 2008; 63: 32-41.10.1016/j.biopsych.2007.04.018219475817588543
  134. 135. Greenbaum L, Smith RC, Rigbi A, et al. Further evidence for association of the RGS2 gene with antipsychotic-induced parkinsonism: protective role of a functional polymorphism in the 3’-untranslated region. Pharmacogenomics J. 2008; 8: 186-195.
  135. 136. Greenbaum L, Strous RD, Kanyas K, et al. Association of the RGS2 gene with extrapyramidal symptoms induced by treatment with antipsychotic medication. Pharmacogenet Genomics. 2007; 17: 519-528.10.1097/FPC.0b013e32800ffbb417558307
  136. 137. Lane HY, Liu YC, Huang CL, et al. RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. J Clin Psychopharmacol. 2008; 28: 64-68. 10.1097/jcp.0b013e3181603f5a18204343
DOI: https://doi.org/10.1515/prilozi-2015-0030 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 53 - 67
Published on: Jun 16, 2015
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Zorica Naumovska, Aleksandra K. Nesterovska, Ana Filipce, Zoran Sterjev, Katerina Brezovska, Aleksandar Dimovski, Ljubica Suturkova, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.