Have a personal or library account? Click to login

Proteomics in Diagnosis of Prostate Cancer/ Протеомика Во Дијагноза На Простатниот Карцином

Open Access
|Jun 2015

References

  1. 1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127(12): 2893-2917.10.1002/ijc.25516
  2. 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5-29.10.3322/caac.21254
  3. 3. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008; 8(4): 268-278.10.1038/nrc2351
  4. 4. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. The New England journal of medicine. 1991; 324(17): 1156-1161.10.1056/NEJM199104253241702
  5. 5. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. The New England journal of medicine. 1987; 317(15): 909-916.10.1056/NEJM198710083171501
  6. 6. Oberaigner W, Horninger W, Klocker H, Schonitzer D, Stuhlinger W, Bartsch G. Reduction of prostate cancer mortality in Tyrol, Austria, after introduction of prostate-specific antigen testing. Am J Epidemiol. 2006; 164(4): 376-384.10.1093/aje/kwj213
  7. 7. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol Rev. 2001; 23(1): 181-186.10.1093/oxfordjournals.epirev.a000787
  8. 8. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012; 61(6): 1079-1092.10.1016/j.eururo.2012.02.054
  9. 9. Nadler RB, Humphrey PA, Smith DS, Catalona WJ, Ratliff TL. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol. 1995; 154(2 Pt 1): 407-413.10.1016/S0022-5347(01)67064-2
  10. 10. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate- specific antigen level < or = 4.0 ng per milliliter. The New England journal of medicine. 2004; 350(22): 2239-2246.10.1056/NEJMoa03191815163773
  11. 11. Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005; 294(1): 66-70.10.1001/jama.294.1.66
  12. 12. Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009; 101(6): 374-383.10.1093/jnci/djp001
  13. 13. Mohler J, Bahnson RR, Boston B, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010; 8(2): 162-200.10.6004/jnccn.2010.0012
  14. 14. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(3): 811-816.10.1073/pnas.0304146101
  15. 15. Sakr WA, Tefilli MV, Grignon DJ, et al. Gleason score 7 prostate cancer: a heterogeneous entity? Correlation with pathologic parameters and disease-free survival. Urology. 2000; 56(5): 730-734.10.1016/S0090-4295(00)00791-3
  16. 16. Hori S, Blanchet JS, McLoughlin J. From prostatespecific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int. 2013; 112(6): 717-728.10.1111/j.1464-410X.2012.11329.x22759214
  17. 17. Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P. Urinary prostate cancer 3 test: toward the age of reason? Urology. 2010; 75(2): 447-453.10.1016/j.urology.2009.03.04619586654
  18. 18. Sartori DA, Chan DW. Biomarkers in prostate cancer: what's new? Curr Opin Oncol. 2014; 26(3): 259-264.10.1097/CCO.0000000000000065411068124626128
  19. 19. Wolters T, van der Kwast TH, Vissers CJ, et al. False-negative prostate needle biopsies: frequency, histopathologic features, and follow-up. Am J Surg Pathol. 2010; 34(1): 35-43.10.1097/PAS.0b013e3181c3ece919935058
  20. 20. Goo YA, Goodlett DR. Advances in proteomic prostate cancer biomarker discovery. J Proteomics. 2010; 73(10): 1839-1850.10.1016/j.jprot.2010.04.00220398807
  21. 21. Pin E, Fredolini C, Petricoin EF, 3rd. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem. 2013; 46(6): 524-538.10.1016/j.clinbiochem.2012.12.012
  22. 22. Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit Rev Clin Lab Sci. 2010; 47(3): 125-138.10.3109/10408363.2010.503558
  23. 23. Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systemswide perspective for protein markers with potential clinical utility. Expert Rev Proteomics. 2013; 10(4): 337-354.10.1586/14789450.2013.827408
  24. 24. Larkin SE, Zeidan B, Taylor MG, et al. Proteomics in prostate cancer biomarker discovery. Expert Rev Proteomics. 2010; 7(1): 93-102.10.1586/epr.09.89
  25. 25. Flatley B, Malone P, Cramer R. MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim Biophys Acta. 2014; 1844(5): 940-949.10.1016/j.bbapap.2013.06.015
  26. 26. Wright ME, Han DK, Aebersold R. Mass spectrometry- based expression profiling of clinical prostate cancer. Mol Cell Proteomics. 2005; 4(4): 545-554.10.1074/mcp.R500008-MCP200
  27. 27. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975; 250(10): 4007-4021.10.1016/S0021-9258(19)41496-8
  28. 28. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997; 18(11): 2071-2077.10.1002/elps.1150181133
  29. 29. Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics. 2004; 1(4): 401-409.10.1586/14789450.1.4.401
  30. 30. Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics. 2001; 1(3): 377-396.10.1002/1615-9861(200103)1:3<;377::AID-PROT377>3.0.CO;2-6
  31. 31. Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 2011; 74(10): 1829-1841.10.1016/j.jprot.2011.05.040
  32. 32. Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014; 104: 140-150.10.1016/j.jprot.2014.03.035
  33. 33. Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999; 17(7): 676-682.10.1038/10890
  34. 34. Patel VJ, Thalassinos K, Slade SE, et al. A comparison of labeling and label-free mass spectrometrybased proteomics approaches. J Proteome Res. 2009; 8(7): 3752-3759.10.1021/pr900080y
  35. 35. Stahl DC, Swiderek KM, Davis MT, Lee TD. Datacontrolled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J Am Soc Mass Spectrom. 1996; 7(6): 532-540.10.1016/1044-0305(96)00057-8
  36. 36. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006; 5(1): 144-156.10.1074/mcp.M500230-MCP20016219938
  37. 37. Liu Y, Chen J, Sethi A, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014; 13(7): 1753-1768.10.1074/mcp.M114.038273408311324741114
  38. 38. Liu Y, Huttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn. 2013; 13(8): 811-825.10.1586/14737159.2013.845089383381224138574
  39. 39. Collins BC, Gillet LC, Rosenberger G, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013; 10(12): 1246-1253.10.1038/nmeth.270324162925
  40. 40. Liu Y, Huttenhain R, Surinova S, et al. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics. 2013; 13(8): 1247-1256.10.1002/pmic.20120041723322582
  41. 41. Kim Y, Ignatchenko V, Yao CQ, et al. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol Cell Proteomics. 2012; 11(12): 1870-1884.10.1074/mcp.M112.017889351811322986220
  42. 42. Principe S, Kim Y, Fontana S, et al. Identification of prostate-enriched proteins by in-depth proteomic analyses of expressed prostatic secretions in urine. J Proteome Res. 2012; 11(4): 2386-2396.10.1021/pr2011236364207422339264
  43. 43. Wolters DA, Washburn MP, Yates JR, 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001; 73(23): 5683-5690.10.1021/ac010617e11774908
  44. 44. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006; 312(5771): 212-217.10.1126/science.112461916614208
  45. 45. Pusch W, Kostrzewa M. Application of MALDITOF mass spectrometry in screening and diagnostic research. Curr Pharm Des. 2005; 11(20): 2577-2591.10.2174/138161205454693216101460
  46. 46. Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004; 20(5): 777-785.10.1093/bioinformatics/btg48414751995
  47. 47. Wright GL, Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn. 2002; 2(6): 549-563.10.1586/14737159.2.6.54912465452
  48. 48. McLerran D, Grizzle WE, Feng Z, et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem. 2008; 54(1): 53-60.10.1373/clinchem.2007.091496433251518024530
  49. 49. Kaiser T, Wittke S, Just I, et al. Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis. 2004; 25(13): 2044-2055.10.1002/elps.20030578815237405
  50. 50. Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005; 24(6): 959-977.10.1002/mas.2005115747373
  51. 51. Bhowmick NA, Moses HL. Tumor-stroma interactions. Curr Opin Genet Dev. 2005; 15(1): 97-101.10.1016/j.gde.2004.12.003
  52. 52. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6(5): 392-401.10.1038/nrc1877
  53. 53. Paweletz CP, Liotta LA, Petricoin EF, 3rd. New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics. Urology. 2001; 57(4 Suppl 1): 160-163.10.1016/S0090-4295(00)00964-X
  54. 54. Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate. 2002; 50(1): 54-63.10.1002/pros.1003211757036
  55. 55. Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007; 121(12): 2596-2605.10.1002/ijc.2301617722004
  56. 56. Ummanni R, Junker H, Zimmermann U, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008; 266(2): 171-185.10.1016/j.canlet.2008.02.04718384941
  57. 57. Ummanni R, Mundt F, Pospisil H, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PloS one. 2011; 6(2): e16833.10.1371/journal.pone.0016833303793721347291
  58. 58. Han ZD, Zhang YQ, He HC, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012; 29(4): 2877-2888.10.1007/s12032-011-0149-922215415
  59. 59. Alaiya AA, Al-Mohanna M, Aslam M, et al. Proteomics- based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol. 2011; 38(4): 1047-1057.10.3892/ijo.2011.93721305254
  60. 60. Zheng Y, Xu Y, Ye B, et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer. 2003; 98(12): 2576-2582.10.1002/cncr.1184914669276
  61. 61. Cheung PK, Woolcock B, Adomat H, et al. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res. 2004; 64(17): 5929-5933.10.1158/0008-5472.CAN-04-121615342369
  62. 62 . Liu AY, Zhang H, Sorensen CM, Diamond DL. Analysis of prostate cancer by proteomics using tissue specimens. J Urol. 2005; 173(1): 73-78.10.1097/01.ju.0000146543.33543.a315592032
  63. 63. Garbis SD, Tyritzis SI, Roumeliotis T, et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2008; 7(8): 3146-3158.10.1021/pr800060r18553995
  64. 64. Sun C, Song C, Ma Z, et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQproteomics analysis of prostate biopsy. Proteome Sci. 2011; 9: 22.10.1186/1477-5956-9-22310023721504578
  65. 65. Lexander H, Palmberg C, Hellman U, et al. Correlation of protein expression, Gleason score and DNA ploidy in prostate cancer. Proteomics. 2006; 6(15): 4370-4380.10.1002/pmic.20060014816888723
  66. 66. Skvortsov S, Schafer G, Stasyk T, et al. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res. 2011; 10(1): 259-268.10.1021/pr100921j20977276
  67. 67. Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QX. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer. 2010; 1: 70-79.10.7150/jca.1.70293806820842227
  68. 68. Pang J, Liu WP, Liu XP, et al. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res. 2010; 9(1): 216-226.10.1021/pr900953s19894759
  69. 69. Glen A, Gan CS, Hamdy FC, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res. 2008; 7(3): 897-907.10.1021/pr070378x18232632
  70. 70. Petricoin EF, 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 2002; 94(20): 1576-1578.10.1093/jnci/94.20.157612381711
  71. 71. Ornstein DK, Rayford W, Fusaro VA, et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol. 2004; 172(4 Pt 1): 1302-1305.10.1097/01.ju.0000139572.88463.3915371828
  72. 72. Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem. 2002; 48(10): 1835-1843.10.1093/clinchem/48.10.1835
  73. 73. Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002; 62(13): 3609-3614.
  74. 74. Malik G, Ward MD, Gupta SK, et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin Cancer Res. 2005; 11(3): 1073-1085.10.1158/1078-0432.1073.11.3
  75. 75. Pan YZ, Xiao XY, Zhao D, et al. Application of surface- enhanced laser desorption/ionization time-offlight- based serum proteomic array technique for the early diagnosis of prostate cancer. Asian J Androl. 2006; 8(1): 45-51.10.1111/j.1745-7262.2006.00103.x16372118
  76. 76. Kyselova Z, Mechref Y, Al Bataineh MM, et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res. 2007; 6(5): 1822-1832.10.1021/pr060664t368517017432893
  77. 77. Qin S, Ferdinand AS, Richie JP, O'Leary MP, Mok SC, Liu BC. Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins. Proteomics. 2005; 5(12): 3183-3192.10.1002/pmic.20040113716035113
  78. 78. Jayapalan JJ, Ng KL, Razack AH, Hashim OH. Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis. 2012; 33(12): 1855-1862.10.1002/elps.20110060822740474
  79. 79. Bergamini S, Bellei E, Reggiani Bonetti L, et al. Inflammation: an important parameter in the search of prostate cancer biomarkers. Proteome Sci. 2014; 12: 32.10.1186/1477-5956-12-32406177524944525
  80. 80. Byrne JC, Downes MR, O'Donoghue N, et al. 2DDIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res. 2009; 8(2): 942-957.10.1021/pr800570s19093873
  81. 81. Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RW. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res. 2011; 10(3): 1361-1373.10.1021/pr101106921166384
  82. 82. Qingyi Z, Lin Y, Junhong W, et al. Unfavorable prognostic value of human PEDF decreased in highgrade prostatic intraepithelial neoplasia: a differential proteomics approach. Cancer Invest. 2009; 27(7): 794-801.10.1080/0735790080217561719637042
  83. 83. Le L, Chi K, Tyldesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem. 2005; 51(4): 695-707.10.1373/clinchem.2004.04108715695329
  84. 84. Al-Ruwaili JA, Larkin SE, Zeidan BA, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis. Cancer Genomics Proteomics. 2010; 7(2): 93-103.
  85. 85. Rosenzweig CN, Zhang Z, Sun X, et al. Predicting prostate cancer biochemical recurrence using a panel of serum proteomic biomarkers. J Urol. 2009; 181(3): 1407-1414.10.1016/j.juro.2008.10.142413015019157448
  86. 86. Lam YW, Mobley JA, Evans JE, Carmody JF, Ho SM. Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics. 2005; 5(11): 2927-2938.10.1002/pmic.20040116515952230
  87. 87. Rehman I, Evans CA, Glen A, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PloS one. 2012; 7(2): e30885.10.1371/journal.pone.0030885328025122355332
  88. 88. Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics. Mol Cell Proteomics. 2008; 7(10): 1850-1862. 10.1074/mcp.R800001-MCP20018667409
  89. 89. Rodriguez-Suarez E, Siwy J, Zurbig P, Mischak H. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim Biophys Acta. 2014; 1844(5): 884-898.10.1016/j.bbapap.2013.06.01623831154
  90. 90. Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis. 2005; 26(14): 2797-2808.10.1002/elps.20040020815981297
  91. 91. Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008; 2(4): 556-570.10.1002/prca.200780082274412619759844
  92. 92. Schiffer E, Bick C, Grizelj B, Pietzker S, Schofer W. Urinary proteome analysis for prostate cancer diagnosis: cost-effective application in routine clinical practice in Germany. Int J Urol. 2012; 19(2): 118-125.10.1111/j.1442-2042.2011.02901.x22103570
  93. 93. M'Koma AE, Blum DL, Norris JL, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun. 2007; 353(3): 829-834.10.1016/j.bbrc.2006.12.111256260017194448
  94. 94. True LD, Zhang H, Ye M, et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod Pathol. 2010; 23(10): 1346-1356.10.1038/modpathol.2010.122294863320562849
  95. 95. Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J Cancer. 2014; 5(2): 103-114.10.7150/jca.6890390976524494028
  96. 96. Kiprijanovska S, Stavridis S, Stankov O, et al. Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS. Int J Proteomics. 2014; 2014: 594761.10.1155/2014/594761415814625215235
  97. 97. Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, Zografska NC, Polenakovic M. Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer. Proteome Sci. 2015; 13(1): 2.10.1186/s12953-014-0059-9431665025653573
  98. 98. Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of interalpha- trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis. 2013; 34(11): 1663-1669.10.1002/elps.20120058323417432
  99. 99. Rehman I, Azzouzi AR, Catto JW, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology. 2004; 64(6): 1238-1243.10.1016/j.urology.2004.06.06315596215
  100. 100. Okamoto A, Yamamoto H, Imai A, et al. Protein profiling of post-prostatic massage urine specimens by surface-enhanced laser desorption/ionization timeof- flight mass spectrometry to discriminate between prostate cancer and benign lesions. Oncol Rep. 2009; 21(1): 73-79.
  101. 101. Nakayama K, Inoue T, Sekiya S, et al. The C-terminal fragment of prostate-specific antigen, a 2331 Da peptide, as a new urinary pathognomonic biomarker candidate for diagnosing prostate cancer. PloS one. 2014; 9(9): e107234.10.1371/journal.pone.0107234416939225233230
  102. 102. Flatley B, Wilmott KG, Malone P, Cramer R. MALDI MS profiling of post-DRE urine samples highlights the potential of beta-microseminoprotein as a marker for prostatic diseases. Prostate. 2014; 74(1): 103-111.10.1002/pros.2273624115268
  103. 103. Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. 2013; 2.10.3402/jev.v2i0.22097387312024371517
  104. 104. Hassan MI, Kumar V, Kashav T, Alam N, Singh TP, Yadav S. Proteomic approach for purification of seminal plasma proteins involved in tumor proliferation. J Sep Sci. 2007; 30(12): 1979-1988.10.1002/jssc.20070002817638362
  105. 105. Neuhaus J, Schiffer E, von Wilcke P, et al. Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease. PloS one. 2013; 8(6): e67514.10.1371/journal.pone.0067514369120523826311
  106. 106. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008; 452(7187): 571-579.10.1038/nature0691618385731
  107. 107. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002; 1(11): 845-867. 10.1074/mcp.R200007-MCP200
DOI: https://doi.org/10.1515/prilozi-2015-0027 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 5 - 36
Published on: Jun 16, 2015
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Katarina Davalieva, Momir Polenakovic, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.