4. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. The New England journal of medicine. 1991; 324(17): 1156-1161.10.1056/NEJM199104253241702
5. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. The New England journal of medicine. 1987; 317(15): 909-916.10.1056/NEJM198710083171501
6. Oberaigner W, Horninger W, Klocker H, Schonitzer D, Stuhlinger W, Bartsch G. Reduction of prostate cancer mortality in Tyrol, Austria, after introduction of prostate-specific antigen testing. Am J Epidemiol. 2006; 164(4): 376-384.10.1093/aje/kwj213
7. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol Rev. 2001; 23(1): 181-186.10.1093/oxfordjournals.epirev.a000787
8. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012; 61(6): 1079-1092.10.1016/j.eururo.2012.02.054
10. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate- specific antigen level < or = 4.0 ng per milliliter. The New England journal of medicine. 2004; 350(22): 2239-2246.10.1056/NEJMoa03191815163773
11. Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005; 294(1): 66-70.10.1001/jama.294.1.66
12. Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009; 101(6): 374-383.10.1093/jnci/djp001
14. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(3): 811-816.10.1073/pnas.0304146101
16. Hori S, Blanchet JS, McLoughlin J. From prostatespecific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int. 2013; 112(6): 717-728.10.1111/j.1464-410X.2012.11329.x22759214
17. Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P. Urinary prostate cancer 3 test: toward the age of reason? Urology. 2010; 75(2): 447-453.10.1016/j.urology.2009.03.04619586654
20. Goo YA, Goodlett DR. Advances in proteomic prostate cancer biomarker discovery. J Proteomics. 2010; 73(10): 1839-1850.10.1016/j.jprot.2010.04.00220398807
21. Pin E, Fredolini C, Petricoin EF, 3rd. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem. 2013; 46(6): 524-538.10.1016/j.clinbiochem.2012.12.012
23. Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systemswide perspective for protein markers with potential clinical utility. Expert Rev Proteomics. 2013; 10(4): 337-354.10.1586/14789450.2013.827408
24. Larkin SE, Zeidan B, Taylor MG, et al. Proteomics in prostate cancer biomarker discovery. Expert Rev Proteomics. 2010; 7(1): 93-102.10.1586/epr.09.89
26. Wright ME, Han DK, Aebersold R. Mass spectrometry- based expression profiling of clinical prostate cancer. Mol Cell Proteomics. 2005; 4(4): 545-554.10.1074/mcp.R500008-MCP200
28. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997; 18(11): 2071-2077.10.1002/elps.1150181133
30. Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics. 2001; 1(3): 377-396.10.1002/1615-9861(200103)1:3<;377::AID-PROT377>3.0.CO;2-6
31. Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 2011; 74(10): 1829-1841.10.1016/j.jprot.2011.05.040
33. Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999; 17(7): 676-682.10.1038/10890
34. Patel VJ, Thalassinos K, Slade SE, et al. A comparison of labeling and label-free mass spectrometrybased proteomics approaches. J Proteome Res. 2009; 8(7): 3752-3759.10.1021/pr900080y
35. Stahl DC, Swiderek KM, Davis MT, Lee TD. Datacontrolled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J Am Soc Mass Spectrom. 1996; 7(6): 532-540.10.1016/1044-0305(96)00057-8
36. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006; 5(1): 144-156.10.1074/mcp.M500230-MCP20016219938
37. Liu Y, Chen J, Sethi A, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014; 13(7): 1753-1768.10.1074/mcp.M114.038273408311324741114
38. Liu Y, Huttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn. 2013; 13(8): 811-825.10.1586/14737159.2013.845089383381224138574
39. Collins BC, Gillet LC, Rosenberger G, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013; 10(12): 1246-1253.10.1038/nmeth.270324162925
40. Liu Y, Huttenhain R, Surinova S, et al. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics. 2013; 13(8): 1247-1256.10.1002/pmic.20120041723322582
41. Kim Y, Ignatchenko V, Yao CQ, et al. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol Cell Proteomics. 2012; 11(12): 1870-1884.10.1074/mcp.M112.017889351811322986220
42. Principe S, Kim Y, Fontana S, et al. Identification of prostate-enriched proteins by in-depth proteomic analyses of expressed prostatic secretions in urine. J Proteome Res. 2012; 11(4): 2386-2396.10.1021/pr2011236364207422339264
45. Pusch W, Kostrzewa M. Application of MALDITOF mass spectrometry in screening and diagnostic research. Curr Pharm Des. 2005; 11(20): 2577-2591.10.2174/138161205454693216101460
46. Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004; 20(5): 777-785.10.1093/bioinformatics/btg48414751995
47. Wright GL, Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn. 2002; 2(6): 549-563.10.1586/14737159.2.6.54912465452
49. Kaiser T, Wittke S, Just I, et al. Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis. 2004; 25(13): 2044-2055.10.1002/elps.20030578815237405
50. Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005; 24(6): 959-977.10.1002/mas.2005115747373
54. Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate. 2002; 50(1): 54-63.10.1002/pros.1003211757036
55. Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007; 121(12): 2596-2605.10.1002/ijc.2301617722004
56. Ummanni R, Junker H, Zimmermann U, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008; 266(2): 171-185.10.1016/j.canlet.2008.02.04718384941
57. Ummanni R, Mundt F, Pospisil H, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PloS one. 2011; 6(2): e16833.10.1371/journal.pone.0016833303793721347291
58. Han ZD, Zhang YQ, He HC, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012; 29(4): 2877-2888.10.1007/s12032-011-0149-922215415
59. Alaiya AA, Al-Mohanna M, Aslam M, et al. Proteomics- based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol. 2011; 38(4): 1047-1057.10.3892/ijo.2011.93721305254
60. Zheng Y, Xu Y, Ye B, et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer. 2003; 98(12): 2576-2582.10.1002/cncr.1184914669276
62 . Liu AY, Zhang H, Sorensen CM, Diamond DL. Analysis of prostate cancer by proteomics using tissue specimens. J Urol. 2005; 173(1): 73-78.10.1097/01.ju.0000146543.33543.a315592032
63. Garbis SD, Tyritzis SI, Roumeliotis T, et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2008; 7(8): 3146-3158.10.1021/pr800060r18553995
64. Sun C, Song C, Ma Z, et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQproteomics analysis of prostate biopsy. Proteome Sci. 2011; 9: 22.10.1186/1477-5956-9-22310023721504578
65. Lexander H, Palmberg C, Hellman U, et al. Correlation of protein expression, Gleason score and DNA ploidy in prostate cancer. Proteomics. 2006; 6(15): 4370-4380.10.1002/pmic.20060014816888723
67. Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QX. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer. 2010; 1: 70-79.10.7150/jca.1.70293806820842227
68. Pang J, Liu WP, Liu XP, et al. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res. 2010; 9(1): 216-226.10.1021/pr900953s19894759
69. Glen A, Gan CS, Hamdy FC, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res. 2008; 7(3): 897-907.10.1021/pr070378x18232632
71. Ornstein DK, Rayford W, Fusaro VA, et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol. 2004; 172(4 Pt 1): 1302-1305.10.1097/01.ju.0000139572.88463.3915371828
72. Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem. 2002; 48(10): 1835-1843.10.1093/clinchem/48.10.1835
73. Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002; 62(13): 3609-3614.
74. Malik G, Ward MD, Gupta SK, et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin Cancer Res. 2005; 11(3): 1073-1085.10.1158/1078-0432.1073.11.3
75. Pan YZ, Xiao XY, Zhao D, et al. Application of surface- enhanced laser desorption/ionization time-offlight- based serum proteomic array technique for the early diagnosis of prostate cancer. Asian J Androl. 2006; 8(1): 45-51.10.1111/j.1745-7262.2006.00103.x16372118
76. Kyselova Z, Mechref Y, Al Bataineh MM, et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res. 2007; 6(5): 1822-1832.10.1021/pr060664t368517017432893
78. Jayapalan JJ, Ng KL, Razack AH, Hashim OH. Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis. 2012; 33(12): 1855-1862.10.1002/elps.20110060822740474
79. Bergamini S, Bellei E, Reggiani Bonetti L, et al. Inflammation: an important parameter in the search of prostate cancer biomarkers. Proteome Sci. 2014; 12: 32.10.1186/1477-5956-12-32406177524944525
80. Byrne JC, Downes MR, O'Donoghue N, et al. 2DDIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res. 2009; 8(2): 942-957.10.1021/pr800570s19093873
81. Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RW. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res. 2011; 10(3): 1361-1373.10.1021/pr101106921166384
82. Qingyi Z, Lin Y, Junhong W, et al. Unfavorable prognostic value of human PEDF decreased in highgrade prostatic intraepithelial neoplasia: a differential proteomics approach. Cancer Invest. 2009; 27(7): 794-801.10.1080/0735790080217561719637042
83. Le L, Chi K, Tyldesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem. 2005; 51(4): 695-707.10.1373/clinchem.2004.04108715695329
84. Al-Ruwaili JA, Larkin SE, Zeidan BA, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis. Cancer Genomics Proteomics. 2010; 7(2): 93-103.
85. Rosenzweig CN, Zhang Z, Sun X, et al. Predicting prostate cancer biochemical recurrence using a panel of serum proteomic biomarkers. J Urol. 2009; 181(3): 1407-1414.10.1016/j.juro.2008.10.142413015019157448
86. Lam YW, Mobley JA, Evans JE, Carmody JF, Ho SM. Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics. 2005; 5(11): 2927-2938.10.1002/pmic.20040116515952230
87. Rehman I, Evans CA, Glen A, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PloS one. 2012; 7(2): e30885.10.1371/journal.pone.0030885328025122355332
89. Rodriguez-Suarez E, Siwy J, Zurbig P, Mischak H. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim Biophys Acta. 2014; 1844(5): 884-898.10.1016/j.bbapap.2013.06.01623831154
90. Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis. 2005; 26(14): 2797-2808.10.1002/elps.20040020815981297
91. Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008; 2(4): 556-570.10.1002/prca.200780082274412619759844
92. Schiffer E, Bick C, Grizelj B, Pietzker S, Schofer W. Urinary proteome analysis for prostate cancer diagnosis: cost-effective application in routine clinical practice in Germany. Int J Urol. 2012; 19(2): 118-125.10.1111/j.1442-2042.2011.02901.x22103570
93. M'Koma AE, Blum DL, Norris JL, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun. 2007; 353(3): 829-834.10.1016/j.bbrc.2006.12.111256260017194448
94. True LD, Zhang H, Ye M, et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod Pathol. 2010; 23(10): 1346-1356.10.1038/modpathol.2010.122294863320562849
95. Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J Cancer. 2014; 5(2): 103-114.10.7150/jca.6890390976524494028
96. Kiprijanovska S, Stavridis S, Stankov O, et al. Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS. Int J Proteomics. 2014; 2014: 594761.10.1155/2014/594761415814625215235
98. Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of interalpha- trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis. 2013; 34(11): 1663-1669.10.1002/elps.20120058323417432
99. Rehman I, Azzouzi AR, Catto JW, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology. 2004; 64(6): 1238-1243.10.1016/j.urology.2004.06.06315596215
100. Okamoto A, Yamamoto H, Imai A, et al. Protein profiling of post-prostatic massage urine specimens by surface-enhanced laser desorption/ionization timeof- flight mass spectrometry to discriminate between prostate cancer and benign lesions. Oncol Rep. 2009; 21(1): 73-79.
101. Nakayama K, Inoue T, Sekiya S, et al. The C-terminal fragment of prostate-specific antigen, a 2331 Da peptide, as a new urinary pathognomonic biomarker candidate for diagnosing prostate cancer. PloS one. 2014; 9(9): e107234.10.1371/journal.pone.0107234416939225233230
102. Flatley B, Wilmott KG, Malone P, Cramer R. MALDI MS profiling of post-DRE urine samples highlights the potential of beta-microseminoprotein as a marker for prostatic diseases. Prostate. 2014; 74(1): 103-111.10.1002/pros.2273624115268
103. Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. 2013; 2.10.3402/jev.v2i0.22097387312024371517
105. Neuhaus J, Schiffer E, von Wilcke P, et al. Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease. PloS one. 2013; 8(6): e67514.10.1371/journal.pone.0067514369120523826311
107. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002; 1(11): 845-867. 10.1074/mcp.R200007-MCP200