Have a personal or library account? Click to login
Recent Advances in the Pathogenesis and Treatment of Chronic Lymphocytic Leukemia Cover

Recent Advances in the Pathogenesis and Treatment of Chronic Lymphocytic Leukemia

Open Access
|Mar 2015

References

  1. 1. Hallek M. Signaling the end of chronic lymphocytic leukemia: new frontline treatment strategies. Blood. 2013; 122(23): 3723-34.10.1182/blood-2013-05-49828724065239
  2. 2. Dores GM, Anderson WF, Curtis RE, Landgren O, Ostroumova E, Bluhm EC, et al. Chronic lympho-cytic leukaemia and small lymphocytic lymphoma: overview of the descriptive epidemiology. Br J Hae-matol. 2007; 139(5): 809-19.10.1111/j.1365-2141.2007.06856.x17941952
  3. 3. Speedy HE, Sava G, Houlston RS. Inherited suscepti-bility to CLL. Adv Exp Med Biol. 2013; 792: 293-308.10.1007/978-1-4614-8051-8_1324014302
  4. 4. Rawstron AC, Bennett FL, O'Connor SJ, Kwok M, Fenton JA, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008; 359(6): 575-83.10.1056/NEJMoa07529018687638
  5. 5. Ghia P, Caligaris-Cappio F. Monoclonal B-cell lymp-hocytosis: right track or red herring? Blood. 2012; 119(19): 4358-62.10.1182/blood-2012-01-40468122422819
  6. 6. Shanafelt TD, Kay NE, Rabe KG, Call TG, Zent CS, Maddocks K, et al. Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J Clin Oncol. 2009; 27(24): 3959-63.10.1200/JCO.2008.21.2704273439719620484
  7. 7. Gribben JG, Riches JC. Immunotherapeutic strategies including transplantation: eradication of disease. He-matology Am Soc Hematol Educ Program. 2013; 2013: 151-7.10.1182/asheducation-2013.1.15124319176
  8. 8. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. International Work-shop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lympho-cytic leukemia: a report from the International Work-shop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008; 111(12): 5446-56.10.1182/blood-2007-06-093906297257618216293
  9. 9. Damle RN, Calissano C, Chiorazzi N. Chronic lymp-hocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol. 2010; 23(1): 33-45.10.1016/j.beha.2010.02.001292199020620969
  10. 10. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343(26): 1910-6.10.1056/NEJM20001228343260211136261
  11. 11. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferra-cin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 102(39): 13944-9.10.1073/pnas.0506654102123657716166262
  12. 12. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lym-phocytic leukemia. Cancer Cell. 2010; 17(1): 28-40.10.1016/j.ccr.2009.11.01920060366
  13. 13. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G, et al. Function-al dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood. 2012; 119(13): 2981-90.10.1182/blood-2011-09-38181422174151
  14. 14. Rossi D, Fangazio M, Gaidano G. The spectrum of genetic defects in chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis. 2012; 4(1): e2012076.10.4084/mjhid.2012.076350752723205264
  15. 15. Martínez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P, Juan M, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lympho-cytic leukemia patients with favorable outcome. Blood. 2014; 123(24): 3790-6.10.1182/blood-2013-12-54330624782504
  16. 16. Burger JA, Gribben JG. The microenvironment in chr-onic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014; 24: 71-81.10.1016/j.semcancer.2013.08.01124018164
  17. 17. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood. 2001; 97(9): 2777-83.10.1182/blood.V97.9.2777
  18. 18. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP, et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood. 2007; 109(4): 1660-8.10.1182/blood-2006-05-02168317038534
  19. 19. Dal-Bo M, Bertoni F, Forconi F, Zucchetto A, Bom-ben R, Marasca R, et al. Intrinsic and extrinsic fac-tors influencing the clinical course of B-cell chronic lymphocytic leukemia: prognostic markers with pathogenetic relevance. J Transl Med. 2009; 7: 76.10.1186/1479-5876-7-76274791319715592
  20. 20. Petlickovski A, Laurenti L, Li X, Marietti S, Chiu-solo P, Sica S, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005; 105(12): 4820-7.10.1182/blood-2004-07-266915728130
  21. 21. Efremov DG, Gobessi S, Longo PG. Signaling path-ways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev. 2007; 7(2): 102-8.10.1016/j.autrev.2007.02.021
  22. 22. Krysov S, Dias S, Paterson A, Mockridge CI, Potter KN, Smith KA, et al. Surface IgM stimulation indu-ces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells. Blood. 2012; 119(1): 170-9.10.1182/blood-2011-07-370403
  23. 23. Kostareli E, Gounari M, Agathangelidis A, Stamato-poulos K. Immunoglobulin gene repertoire in chronic lymphocytic leukemia: insight into antigen selection and microenvironmental interactions. Mediterr J Hematol Infect Dis. 2012; 4(1): e2012052.10.4084/mjhid.2012.052
  24. 24. Kipps TJ, Carson DA. Autoantibodies in chronic lymphocytic leukemia and related systemic autoim-mune diseases. Blood. 1993; 81(10): 2475-87.10.1182/blood.V81.10.2475.2475
  25. 25. Schroeder HW Jr, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibo-dy repertoire. Immunol Today. 1994; 15(6): 288-94.10.1016/0167-5699(94)90009-4
  26. 26. Efremov DG, Ivanovski M, Siljanovski N, Pozzato G, Cevreska L, Fais F, et al. Restricted immuno-globulin VH region repertoire in chronic lymphocytic leukemia patients with autoimmune hemolytic ane-mia. Blood. 1996; 87(9): 3869-76.10.1182/blood.V87.9.3869.bloodjournal8793869
  27. 27. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004; 200(4): 519-25.10.1084/jem.20040544221193615314077
  28. 28. Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K, et al. Subsets with restricted immu-noglobulin gene rearrangement features indicate a role for antigen selection in the development of chro-nic lymphocytic leukemia. Blood. 2004; 104(9): 2879-85.10.1182/blood-2004-01-013215217826
  29. 29. Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. Chronic lymphocytic leuke-mia B cells of more than 1% of patients express vir-tually identical immunoglobulins. Blood. 2004; 104(8): 2499-504. 30. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012; 119(19): 4467-75. 31. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998; 102(8): 1515-25. 32. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999; 94(6): 1840-7. 33. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Ste-venson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999; 94(6): 1848-54. 34. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001; 194(11): 1639-47. 35. Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microen-vironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011; 117(2): 563-74. 36. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, et al. The actin and tetraspanin net-works organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013; 38(3): 461-74.
  30. 37. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a promistream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008; 111(2): 846-55.10.1182/blood-2007-05-08903717928528
  31. 38. Negro R, Gobessi S, Longo PG, He Y, Zhang ZY, Laurenti L, Efremov DG. Overexpression of the autoimmunity-associated phosphatase PTPN22 pro-motes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood. 2012; 119(26): 6278.87.10.1182/blood-2012-01-403162338319422569400
  32. 39. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005; 115(2): 369.78.10.1172/JCI200522094
  33. 40. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG. ZAP-70 enhances B-cell-receptor sig-naling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lym-phoma B cells. Blood. 2007; 109(5): 2032.9.10.1182/blood-2006-03-01175917038529
  34. 41. Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009; 23(4): 686.97.10.1038/leu.2008.34619092849
  35. 42. Ringshausen I, Schneller F, Bogner C, Hipp S, Duy-ster J, Peschel C, Decker T. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood. 2002; 100(10): 3741.8.10.1182/blood-2002-02-053912393602
  36. 43. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-Ɣ inhibitor CAL-101 shows promising pre-clinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010; 116(12): 2078.88.10.1182/blood-2010-02-271171295185520522708
  37. 44. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treat-ment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011; 117(23): 6287.96.10.1182/blood-2011-01-328484312294721422473
  38. 45. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, et al. Chronic lymphocytic leukaemia is driven by antigen-indepen-dent cell-autonomous signalling. Nature. 2012; 489(7415): 309.12.10.1038/nature1130922885698
  39. 46. Binder M, Muller F, Frick M, Wehr C, Simon F, Leistler B, et al. CLL B-cell receptors can recognize themselves: alternative epitopes and structural clues for autostimulatory mechanisms in CLL. Blood. 2013; 121(1): 239.41.10.1182/blood-2012-09-45443923287626
  40. 47. Lanemo Myhrinder A, Hellqvist E, Sidorova E, et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood. 2008; 111(7): 3838.3848.10.1182/blood-2007-11-12545018223168
  41. 48. Chu CC, Catera R, Hatzi K, et al. Chronic lymp-hocytic leukemia antibodies with a common stereo-typic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood. 2008; 112(13): 5122.9.10.1182/blood-2008-06-162024259760818812466
  42. 49. Catera R, Silverman GJ, Hatzi K, et al. Chronic lymphocytic leukemia cells recognize conserved epi-topes associated with apoptosis and oxidation. Mol Med. 2008; 14(11.12): 665.74.10.2119/2008-00102.Catera258286019009014
  43. 50. Chu CC, Catera R, Zhang L, et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of ori-gin. Blood. 2010; 115(19): 3907.15.10.1182/blood-2009-09-244251286955520110421
  44. 51. Binder M, Lechenne B, Ummanni R, et al. Stereoty-pical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells. PLoS One. 2010; 5(12): e15992.10.1371/journal.pone.0015992301272021209908
  45. 52. Hoogeboom R, van Kessel KP, Hochstenbach F, et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi. J Exp Med. 2013; 210: 59.70.10.1084/jem.20121801354971823296468
  46. 53. Kostareli E, Gounari M, Janus A, et al. Antigen re-ceptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity. Leukemia. 2012; 26: 1127.31.10.1038/leu.2011.31122051533
  47. 54. Hoogeboom R, Wormhoudt TA, Schipperus MR, et al. A novel chronic lymphocytic leukemia subset ex-pressing mutated IGHV3-7-encoded rheumatoid fac-tor B-cell receptors that are functionally proficient. Leukemia. 2013; 27: 738.40.10.1038/leu.2012.23822902363
  48. 55. Iacovelli S, Hug E, Bennardo S, Duehren-von Minden M, Gobessi S, Rinaldi A, et al. Two types of BCR interactions are positively selected during leukemia development in the Eµ-TCL1 transgenic mouse model of CLL. Blood. 2015 Jan 6. pii: blood-2014-07-587790. [Epub ahead of print] 56. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002; 99(10): 6955.60.
  49. 57. Chiorazzi N, Efremov DG. Chronic lymphocytic leu-kemia: a tale of one or two signals? Cell Res. 2013; 23(2): 182.5.10.1038/cr.2012.152356781923147791
  50. 58. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G, et al. Self-renewing hemato-poietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011; 20(2): 246.59.10.1016/j.ccr.2011.06.02921840488
  51. 59. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013; 4(3): 566.77.10.1016/j.celrep.2013.07.01123933259
  52. 60. Rasi S, Monti S, Spina V, Foa R, Gaidano G, Rossi D. Analysis of NOTCH1 mutations in monoclonal B-cell lymphocytosis. Haematologica. 2012; 97(1): 153.4.10.3324/haematol.2011.053090324894721993686
  53. 61. Greco M, Capello D, Bruscaggin A, Spina V, Rasi S, Monti S, et al. Analysis of SF3B1 mutations in mo-noclonal B-cell lymphocytosis. Hematol Oncol. 2013; 31(1): 54.5.10.1002/hon.2013
  54. 62. Efremov DG, Bomben R, Gobessi S, Gattei V. TLR9 signaling defines distinct prognostic subsets in CLL. Front Biosci (Landmark Ed). 2013; 18: 371.86.10.2741/4108
  55. 63. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lympho-cytic leukemia. N Engl J Med. 2000; 343(24): 1750-7.10.1056/NEJM200012143432402
  56. 64. O'Brien SM, Kantarjian HM, Cortes J, Beran M, Koller CA, Giles FJ, et al. Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001; 19(5): 1414-20.10.1200/JCO.2001.19.5.1414
  57. 65. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. International Group of In-vestigators; German Chronic Lymphocytic Leukae-mia Study Group. Addition of rituximab to fludara-bine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010; 376(9747): 1164-74.10.1016/S0140-6736(10)61381-5
  58. 66. Tam CS, O'Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008; 112(4): 975-80.10.1182/blood-2008-02-140582395249818411418
  59. 67. Foon KA, Boyiadzis M, Land SR, Marks S, Raptis A, Pietragallo L, et al. Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009; 27(4): 498-503.10.1200/JCO.2008.17.261919075274
  60. 68. Fischer K, Cramer P, Busch R, Böttcher S, Bahlo J, Schubert J, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209-16.10.1200/JCO.2011.39.268822869884
  61. 69. Kolibaba KS, Sterchele JA, Joshi AD, Forsyth M, Alwon E, Beygi H, Kennealey GT. Demographics, treatment patterns, safety, and real-world effective-ness in patients aged 70 years and over with chronic lymphocytic leukemia receiving bendamustine with or without rituximab: a retrospective study. Ther Adv Hematol. 2013; 4(3): 157-71.10.1177/2040620713478629366644623730494
  62. 70. Laurenti L, Vannata B, Innocenti I, Autore F, Santini F, Piccirillo N, et al. Chlorambucil plus Rituximab as Front-Line Therapy in Elderly/Unfit Patients Affected by B-Cell Chronic Lymphocytic Leukemia: Results of a Single-Centre Experience. Mediterr J Hematol Infect Dis. 2013; 5(1): e2013031.10.4084/mjhid.2013.031
  63. 71. Foà R, Del Giudice I, Cuneo A, Del Poeta G, Ciolli S, Di Raimondo F, et al. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am J Hematol. 2014; 89(5): 480-6.10.1002/ajh.2366824415640
  64. 72. Hillmen P, Gribben JG, Follows GA, Milligan D, Sayala HA, Moreton P, et al. Rituximab plus chlo-rambucil as first-line treatment for chronic lym-phocytic leukemia: Final analysis of an open-label phase II study. J Clin Oncol. 2014; 32(12): 1236-41.10.1200/JCO.2013.49.6547487634324638012
  65. 73. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chloram-bucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101-10.10.1056/NEJMoa131398424401022
  66. 74. Suljagic M, Longo PG, Bennardo S, Perlas E, Leone G, Laurenti L, Efremov DG. The Syk inhibitor fosta-matinib disodium (R788) inhibits tumor growth in the Eµ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood. 2010; 116(23): 4894.905.10.1182/blood-2010-03-27518020716772
  67. 75. Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M, et al. Spleen tyrosine kinase is overex-pressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 2009; 69(13): 5424.32.10.1158/0008-5472.CAN-08-425219549911
  68. 76. Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD, et al. The tyrosine kinase Syk regulates the survival of chronic lympho-cytic leukemia B cells through PKCdelta and pro-teasome-dependent regulation of Mcl-1 expression. Oncogene. 2009; 28(37): 3261.73.10.1038/onc.2009.17919581935
  69. 77. Efremov DG, Laurenti L. The Syk kinase as a therapeutic target in leukemia and lymphoma. Expert Opin Investig Drugs. 2011; 20(5): 623.36.10.1517/13543784.2011.57032921438742
  70. 78. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lym-phocytic leukemia. Blood. 2010; 115(13): 2578.85.10.1182/blood-2009-08-236471285236219965662
  71. 79. Woyach JA, Johnson AJ, Byrd JC. The B-cell recep-tor signaling pathway as a therapeutic target in CLL. Blood. 2012; 120(6): 1175.84.10.1182/blood-2012-02-362624341871422715122
  72. 80. Currie KS, Kropf JE, Lee T, Blomgren P, Xu J, Zhao Z, et al. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J Med Chem. 2014; 57(9): 3856.73.10.1021/jm500228a24779514
  73. 81. Sharman JP, Klein LM, Boxer M, Kolibaba KS, Abella-Dominicis E, Hawkins MJ, Di Paolo J, Hu J, Reddy A, Jin F, Melchor-Khan F, Yasenchak CA. Phase 2 trial of GS-9973, a selective Syk inhibitor, in chronic lymphocytic leukemia (CLL). J Clin Oncol 32: 5s, 2014 (suppl; abstr 7007).10.1200/jco.2014.32.15_suppl.7007
  74. 82. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P, et al. The Akt signaling path-way determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia. 2007; 21(1): 110.20.10.1038/sj.leu.240441717024114
  75. 83. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014; 13(2): 140.56.10.1038/nrd4204399498124481312
  76. 84. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110-delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011; 117(2): 591.4.10.1182/blood-2010-03-275305369450520959606
  77. 85. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phospho-inositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011; 118(13): 3603-12.10.1182/blood-2011-05-352492491656221803855
  78. 86. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110ä, for relap-sed/refractory chronic lymphocytic leukemia. Blood. 2014; 123(22): 3390-7.10.1182/blood-2013-11-535047412341424615777
  79. 87. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014; 370(11): 997-1007.10.1056/NEJMoa1315226416136524450857
  80. 88. Woyach JA, Bojnik E, Ruppert AS, Stefanovski MR, Goettl VM, Smucker KA, et al. Bruton's tyrosine kinase (BTK) function is important to the develop-ment and expansion of chronic lymphocytic leukemia (CLL). Blood. 2014; 123(8): 1207-13.10.1182/blood-2013-07-515361393119024311722
  81. 89. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013; 31(1): 88-94.10.1200/JCO.2012.42.7906550516623045577
  82. 90. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013; 369(1): 32-42.10.1056/NEJMoa1215637377252523782158
  83. 91. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. RESONATE Investigators. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014; 371(3): 213-23.10.1056/NEJMoa1400376
  84. 92. O'Brien S, Furman RR, Coutre SE, Sharman JP, Bur-ger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leuka-emia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014; 15(1): 48-58.10.1016/S1470-2045(13)70513-8
  85. 93. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014; 15(10): 1090-9.10.1016/S1470-2045(14)70335-3
  86. 94. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 102(39): 13944-9.10.1073/pnas.0506654102123657716166262
  87. 95. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012; 30(5): 488-96.10.1200/JCO.2011.34.7898497908222184378
  88. 96. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor acti-vity while sparing platelets. Nat Med. 2013; 19(2): 202-8.10.1038/nm.304823291630
  89. 97. Seymour JF, Davids MS, Pagel JM, Kahl BS, Wierda WG, Miller TP, et al. Humerickhouse RA, Roberts AW. Bcl-2 Inhibitor ABT-199 (GDC-0199) Monothe-rapy Shows Anti-Tumor Activity Including Complete Remissions In High-Risk Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma (SLL). Blood 2013; 122: 872.
  90. 98. Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014; 65: 333-47.10.1146/annurev-med-060512-150254412007724274181
  91. 99. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chro-nic lymphoid leukemia. N Engl J Med. 2011; 365(8): 725-33.10.1056/NEJMoa1103849338727721830940
  92. 100. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368(16): 1509-18.10.1056/NEJMoa1215134405844023527958
  93. 101. Kochenderfer JN, Dudley ME, Kassim SH, Somer-ville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-Refractory Diffuse Large B-Cell Lym-phoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expres-sing an Anti-CD19 Chimeric Antigen Receptor. J Clin Oncol. 2014 Aug 25. pii: JCO.2014.56.2025.
  94. 102. Porter DL, Kalos M, Frey NV, Grupp SA, Loren AW, Jemison C, et al. Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019 cells) Have Long-Term Persistence and Induce Du-rable Responses In Relapsed, Refractory CLL. Blood. 2013; 122: 4162.10.1182/blood.V122.21.4162.4162
  95. 103. Woyach JA, Furman RR, Liu TM, Ozer HG, Za-patka M, Ruppert AS, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014; 370(24): 2286-94.10.1056/NEJMoa1400029414482424869598
  96. 104. Laurenti L, De Padua L, D'Arena G, Vannata B, In-nocenti I, Tarnani M, et al. New and old monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Mini Rev Med Chem. 2011; 11(6): 508-18.10.2174/13895571179584337421561405
  97. 105. Bojarczuk K, Siernicka M, Dwojak M, Bobrowicz M, Pyrzynska B, Gaj P, et al. B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies. Leuke-mia. 2014; 28(5): 1163-7.10.1038/leu.2014.1224492323
  98. 106. Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014; 123(12): 1957-60.10.1182/blood-2014-01-547869396216924652965
  99. 107. Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, et al. High-throughput combinatorial scre-ening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lym-phoma cells. Proc Natl Acad Sci U S A. 2014; 111(6): 2349-54.10.1073/pnas.1311846111392602624469833
DOI: https://doi.org/10.1515/prilozi-2015-0015 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 105 - 120
Published on: Mar 1, 2015
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Dimitar G. Efremov, Luca Laurenti, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.