Have a personal or library account? Click to login
The Experimental Identification of the Dynamic Coefficients of two Hydrodynamic Journal Bearings Operating at Constant Rotational Speed and Under Nonlinear Conditions Cover

The Experimental Identification of the Dynamic Coefficients of two Hydrodynamic Journal Bearings Operating at Constant Rotational Speed and Under Nonlinear Conditions

Open Access
|Jan 2018

References

  1. 1. Arora, V., Van Der Hoogt, P.J.M., Aarts, R.G.K.M., De Boer, A.: Identification of stiffness and damping characteristics of axial air-foil bearings. International Journal of Mechanics and Materials in Design. 2011, 7(3), pp. 231-243.
  2. 2. Bagiński, P., Żywica, G.: Analysis of dynamic compliance of the supporting structure for the prototype of organic Rankine cycle micro-turbine with a capacity of 100 kWe. Journal of Vibroengineering. 2016, 18(5), pp. 3153-3163.10.21595/jve.2016.17098
  3. 3. Błaszczyk, A., Głuch, J., Gardzilewicz, A.: Operating and economic conditions of cooling water control for marine steam turbine condensers. Polish Maritime Research. 2012, 18(3), pp. 48-54.
  4. 4. Breńkacz, Ł.: Identification of stiffness, damping and mass coefficients of rotor-bearing system using impulse response method. Journal of Vibroengineering. 2015, 17(5), pp. 2272-2282.
  5. 5. Breńkacz, Ł., Żywica, G.: The Sensitivity Analysis of the Method for Identification of Bearing Dynamic Coefficients. In J. Awrejcewicz (Ed.), Dynamical Systems: Modelling: Łódź Poland, December 7-10, 2015. Cham: Springer International Publishing 2016, pp. 81-96.10.1007/978-3-319-42402-6_8
  6. 6. Chatterton, S., Pennacchi, P., Dang, P.V., Vania, A.: Identification Dynamic Force Coefficients of a Five-Pad Tilting-Pad Journal Bearing. In Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. 2015, pp. 931-941.10.1007/978-3-319-06590-8_76
  7. 7. Dang, P.V., Chatterton, S., Pennacchi, P., Vania, A.: Effect of the load direction on non-nominal five-pad tilting-pad journal bearings. Tribology International. 2016, 98, pp. 197-211.10.1016/j.triboint.2016.02.028
  8. 8. Delgado, A.: Experimental identification of dynamic force coefficients for a 110 mm compliantly damped hybrid gas bearing. Journal of Engineering for Gas Turbines and Power. 2015, 137(7), pp. 72502-72502-8.
  9. 9. Dimond, T.W., Sheth, P.N., Allaire, P.E., He, M.: Identification methods and test results for tilting pad and fixed geometry journal bearing dynamic coefficients -A review. Shock and Vibration. 2009, 16(1), pp. 13-43.10.1155/2009/708363
  10. 10. Dzida, M., Girtler, J., Dzida, S.: On the possible increasing of efficiency of ship power plant with the system combined of marine Diesel engine, gas turbine and steam turbine in case of main engine cooperation with the gas turbine fed in series and the steam turbine. Polish Maritime Research. 2009, 16(3), pp. 26-31.
  11. 11. Jin, J., Wang, Z., Cao, L.: Numerical analysis on the influence of the twisted blade on the aerodynamic performance of thrbine. 2016, 23, pp. 86-90.
  12. 12. Kiciński, J.: Dynamics of rotors and slide bearings (in Polish).Gdańsk: IMP PAN, Maszyny Przepływowe 2005.
  13. 13. Kiciński, J., Żywica, G.: Steam Microturbines in Distributed Cogeneration. Springer monograph 2014.10.1007/978-3-319-12018-8
  14. 14. Kowalczyk, T., Głuch, J., Ziółkowski, P.: Analysis of possible application of high-temperature nuclear reactors to contemporary large-output steam power plants on ships. Polish Maritime Research. 2016, 2(90), pp. 32-41.
  15. 15. Kozanecki, Z., Kiciński, J., Żywica, G.: Numerical Model of the High Speed Rotors Supported on Variable Geometry Bearings. In IUTAM Bookseries. 2011, Vol. 1011, pp. 217-227.
  16. 16. Litwin, W.: Influence of local bush wear on water lubricated sliding bearing load carrying capacity. Tribology International. 2016, 103, pp. 352-358.
  17. 17. Litwin, W., Olszewski, A.: Water-lubricated sintered bronze journal bearings-theoretical and experimental research. Tribology Transactions. 2014, 57(1), pp. 114-122.
  18. 18. Paszota, Z.: Losses and energy efficiency of drive motors and systems. Replacement of the Sankey diagram of power decrease in the direction of power flow by a diagram of power increase opposite to the direction of power flow opens a new perspective of research of driv. 2013, 20(1), pp. 3-10.
  19. 19. Qiu, Z.L., Tieu, A.K.: Identification of sixteen force coefficients of two journal bearings from impulse responses. Wear. 1997, 212(2), pp. 206-212.
  20. 20. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform - Algorithms and Applications. (Springer, Ed.). Dordrecht 2010.10.1007/978-1-4020-6629-0
  21. 21. Tiwari, R., Lees, A.W., Friswell, M.I.: Identification of dynamic bearing parameters: a review. The Shock and Vibration Digest. 2004, 36(2), pp. 99-124.10.1177/0583102404040173
  22. 22. Yari, E., Ghassemi, H.: Boundary element method applied to added mass coefficient calculation of the skewed marine propellers. 2016, 23(2), pp. 25-31.
  23. 23. Zywica, G., Kicinski, J., Baginski, P.: The static and dynamic numerical analysis of the foil bearing structure. Journal of Vibrational Engineering and Technologies. 2016, 4(3), pp. 213-220.
DOI: https://doi.org/10.1515/pomr-2017-0142 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 108 - 115
Published on: Jan 13, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Łukasz Breńkacz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.