Have a personal or library account? Click to login
Research on Big Data Attribute Selection Method in Submarine Optical Fiber Network Fault Diagnosis Database Cover

Research on Big Data Attribute Selection Method in Submarine Optical Fiber Network Fault Diagnosis Database

By: Ganlang Chen  
Open Access
|Nov 2017

References

  1. 1. Karabadji N E I, Seridi H, Khelf I, et al. Improved decision tree construction based on attribute selection and data sampling for fault diagnosis in rotating machines. Engineering Applications of Artificial Intelligence, 2014, 35(35):71-83.10.1016/j.engappai.2014.06.010
  2. 2. Zhang Q H, Qin A, Shu L, et al. Vibration sensor based intelligent fault diagnosis system for large machine unit in petrochemical industry. International Journal of Distributed Sensor Networks, 2015, 2015(3):1376-1381. 10.1155/2015/239405
  3. 3. Jin S, Cui W, Jin Z, et al. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.. Sensors, 2015, 15(7):17366-17396.10.3390/s150717366454193926193280
  4. 4. Panda M, Khilar P M. Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 2015, 25(PA):170-184.10.1016/j.adhoc.2014.10.006
  5. 5. Zhang Q H, Hu Q, Sun G, et al. Concurrent Fault Diagnosis for Rotating Machinery Based on Vibration Sensors. International Journal of Distributed Sensor Networks, 2015, 2013(1):59-72.
  6. 6. Reppa V, Polycarpou M M, Panayiotou C G. Distributed Sensor Fault Diagnosis for a Network of Interconnected Cyberphysical Systems. IEEE Transactions on Control of Network Systems, 2015, 2(1):11-23.10.1109/TCNS.2014.2367362
  7. 7. Islam R, Khan S A, Kim J M. Discriminant Feature Distribution Analysis-Based Hybrid Feature Selection for Online Bearing Fault Diagnosis in Induction Motors. Journal of Sensors, 2016, 2016(2):1-16.10.1155/2016/7145715
  8. 8. LAn-qiang, Liu Z, Yin C Q, et al. A Fault Diagnosis Method Forwavelet Packet and Neural Network-Based Submarine Cables. Study on Optical Communications, 2016, 42(2):16-22..
  9. 9. Gao Y, Yang C, Tian S, et al. Entropy Based Test Point Evaluation and Selection Method for Analog Circuit Fault Diagnosis. Mathematical Problems in Engineering, 2014, 2014(6):1-16.10.1155/2014/259430
  10. 10. Lei Y, Jia F, Lin J, et al. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Transactions on Industrial Electronics, 2016, 63(5):3137-3147.10.1109/TIE.2016.2519325
  11. 11. Wang S, Sun X, Li C. Wind Turbine Gearbox Fault Diagnosis Method Based on Riemannian Manifold. Mathematical Problems in Engineering, 2015, 2014(4):1-10.
  12. 12. Jin X, Chow T W S, Sun Y, et al. Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis. Wireless Networks, 2015, 21(3):829-839.10.1007/s11276-014-0820-0
  13. 13. Kelkar S, Kamal R. Adaptive Fault Diagnosis Algorithm for Controller Area Network. IEEE Transactions on Industrial Electronics, 2014, 61(10):5527-5537.10.1109/TIE.2013.2297296
  14. 14. Unal M, Onat M, Demetgul M, et al. Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement, 2014, 58:187-196.10.1016/j.measurement.2014.08.041
  15. 15. Lu Chong, Xu Hui, Yang Yongchun. Research and application of . decision tree classification algorithm based on electronic design engineering, 2016, 24 (18): 1-3.
  16. 16. Gao, W. and W. Wang, The fifth geometric-arithmetic index of bridge graph and carbon nanocones. Journal of Difference Equations and Applications, 2017. 23(1-2SI): p. 100-109.10.1080/10236198.2016.1197214
  17. 17. Gao, W., et al., Distance learning techniques for ontology similarity measuring and ontology mapping. Cluster Computing-The Journal of Networks Software Tools and Applications, 2017. 20(2SI): p. 959-968.10.1007/s10586-017-0887-3
  18. 18. Xue C, Jing L I, Wang H, et al. Effects of Target and Distractor Saturations on the Cognitive Performance of an Integrated Display Interface. Chinese Journal of Mechanical Engineering, 2015, 28(1):208-216.10.3901/CJME.2014.1030.161
  19. 19. Halim H,Abdullah R, Nor M J M,Aziz H A, Rahman N A. Comparison Between Measured Traffic Noise in Klang Valley, Malaysia And Existing Prediction Models. Engineering Heritage Journal, 2017, 1(2):10-14.10.26480/gwk.02.2017.10.14
  20. 20. Ebrahimi N, Gharibreza M,Hosseini M, Ashraf M A. Experimental study on the impact of vegetation coverage on flow roughness coefficient and trapping of sediment. Geology, Ecology, and Landscapes, 2017, 1(3): 167-172.10.1080/24749508.2017.1361133
  21. 21. Adugna O,Alemu A. Evaluation of brush wood with stone check dam on gully rehabilitation. Journal CleanWAS, 2017, 1(2): 10-13.10.26480/jcleanwas.02.2017.10.13
  22. 22. Guoming L,Yanmin C,Guowe Y, Xiaoping Y.Research on Data Management Model of National Defense Mobilization Potential Based on Geo-Spatial Framework. Malaysian Journal Geosciences, 2017, 1(2): 10-12.10.26480/mjg.02.2017.10.12
  23. 23. Simon N, Roslee R, Lai G T. Temporal Landslide Susceptibility Assessment Using Landslide Density Technique. Geological Behavior, 2017, 1(2):10-13.10.26480/gbr.02.2017.10.13
  24. 24. Isemael Y Y. Molecular, Histological and biochemical effects of tea seed cake on hepatic and renal functions of Oreochromis niloticus. Acta Scientifica Malaysia, 2017, 1(1): 13-15.10.26480/asm.01.2017.08.10
DOI: https://doi.org/10.1515/pomr-2017-0126 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 221 - 227
Published on: Nov 22, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Ganlang Chen, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.