References
- 1. B He, L Ying, S Zhang, X Feng, R Nian, 2015. Autonomous navigation based on unscent ed-FastSL AM using particle swarm optimization for autonomous underwater vehicles. Meas rement, 71(1), 89-101.10.1016/j.measurement.2015.02.026
- 2. Y Shen, H Zhang, B He, T Yan, 2015. Autonomous Navigation Based on SEIF with Consistency Constraint for C-Ranger AUV. Mathematical Problems in Engineering, 3(1), 231-243.10.1155/2015/752360
- 3. Daqi Zhu, Huan Huang, and Simon X. Yang, 2013. Dynamic Task Assignment and Path Planning of Multi- AUV System Based on an Improved Self-Organizing Map and Velo city Synthesis Method in Three-Dimensional Underwater Workspace. IEEE Transactions on Cybernetics, 43(2), 504-514.10.1109/TSMCB.2012.221021222949070
- 4. DF Yuan, L Cong-Ying, 2013.Application of Improved Ant Colony Algorithm for Quadrat ic Assignment Problems. Computer and Modernization, 3(1), 9-11.
- 5. Parag C. Pendharkar, 2015. An ant colony optimization heuristic for constrained task alloc ation problem. Journal of Computational Science, 7(1), 37-47.10.1016/j.jocs.2015.01.001
- 6. Celal Ozkale, Alpaslan Fığlalı, 2013. Evaluation of the multiobjective ant colony algorithm performances on biobjective quadratic assignment problems. Applied Mathematical Modelling, 37(1), 7822-7838.10.1016/j.apm.2013.01.045
- 7. Zahra Beheshti, Siti Mariyam Shamsuddin, 2015. Nonparametric particle swarm optimization for global optimization. Applied Soft Computing, 28(2), 345-359.10.1016/j.asoc.2014.12.015
- 8. AI Awad, NA El-Hefnawy, HM Abdel_Kader, 2015. Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments. Procedia Computer Science, 35(1), 920-929.10.1016/j.procs.2015.09.064
- 9. Eliseo Ferrante, Ali Emre Turgut, Edgar Duenez- Guzman, Marco Dorigo,Tom Wenseleers,2015. Evolution of Self-Organized Task Specialization in Robot Swarms. Computational Biology, 10(3), 1371-1392.
- 10. Christina M. Grozinger, Jessica Richards, Heather R. Mattila, 2014. From molecules to societies: mechanisms regulating swarming behavior in honey bees. Apidologie, 45(3), 327-346.10.1007/s13592-013-0253-2
- 11. D Karaboga, Basturk, 2007.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.10.1007/s10898-007-9149-x
- 12. R Akbari, A Mohammadi, K Ziarati, 2010. A novel bee swarm optimization algorithm for numerical function optimization. Communications in Nonlinear Science and Numerica Simulat, 15(5), 3142-3155.10.1016/j.cnsns.2009.11.003
- 13. Hsing-Chih Tsai, 2014. Integrating the artificial bee colony and bees algorithm to face constrained optimization problems. Information Sciences, 258(2), 80-93.10.1016/j.ins.2013.09.015
- 14. Dervis Karaboga, Beyza Gorkemli, Celal Ozturk,Nurhan Karaboga, 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57.10.1007/s10462-012-9328-0
- 15. Pinar Civicioglu, Erkan Besdok, 2013. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(2), 315-346.10.1007/s10462-011-9276-0
- 16. Peio Loubierea, Astrid Jourdana, Patrick Siarryb, achid Chelouaha, 2016. A sensitivity analysis method for driving the Artificial Bee Colony algorithm’s search process. Applied Soft Computing, 41(1), 515-531.10.1016/j.asoc.2015.12.044
- 17. D Karaboga, B Akay, 2009. A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31(1), 61-85. 10.1007/s10462-009-9127-4
- 18. Celal Ozturk, Emrah Hancer, Dervis Karaboga, 2015. Improved clustering criterion for image clustering with artificial bee colony algorithm. Pattern Analysis and Applications, 18(3), 587-599.10.1007/s10044-014-0365-y
- 19. J Sun, W Fang, X Wu,2014. Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection. Evolutionary Computation, 20(3), 349-393.10.1162/EVCO_a_0004921905841
- 20. Miha Mlakar, Dejan Petelin, Tea Tušar, Bogdan Filipič, 2015. GP-DEMO: Differential evolution for multiobjective optimization based on Gaussian process models. European Journal of Operational Research, 243(2), 347-361.10.1016/j.ejor.2014.04.011
- 21. A. C. Biju, T. Aruldoss Albert Victoire, and Kumaresan Mohanasundaram, 2015. An Improved Differential Evolution Solution for Software Project Scheduling Problem. Scientific World Journal, 2(1), 1-9.10.1155/2015/232193460604326495419
- 22. Sk. Minhazul Islam, Swagatam Das, 2012. An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 482-500.10.1109/TSMCB.2011.216796622010153
- 23. Bahriye Akay, Dervis Karaboga, 2012. Artificial bee colony has a differential evolution algorithm search strategy. Journal of Intelligent Manufacturing, 23(4), 1001-1014.
- 24. A Bouaziz, A Draa, S Chikhi, 2013. A Quantum-inspired Artificial Bee Colony algorithm for numerical optimization. In: International Symposium on Programming & Systems. Algiers Algeria. pp. 81-88.10.1109/ISPS.2013.6581498
- 25. X li, M yin, 2014. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynamics, 77(1), 61-71.10.1007/s11071-014-1273-9
- 26. D Karaboga, B Gorkemli, C Ozturk, N Karaboga, 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1),21-5710.1007/s10462-012-9328-0