Have a personal or library account? Click to login
Multi-Auv Distributed Task Allocation Based on the Differential Evolution Quantum Bee Colony Optimization Algorithm Cover

Multi-Auv Distributed Task Allocation Based on the Differential Evolution Quantum Bee Colony Optimization Algorithm

By: Jianjun Li and  Ru Bo Zhang  
Open Access
|Nov 2017

References

  1. 1. B He, L Ying, S Zhang, X Feng, R Nian, 2015. Autonomous navigation based on unscent ed-FastSL AM using particle swarm optimization for autonomous underwater vehicles. Meas rement, 71(1), 89-101.10.1016/j.measurement.2015.02.026
  2. 2. Y Shen, H Zhang, B He, T Yan, 2015. Autonomous Navigation Based on SEIF with Consistency Constraint for C-Ranger AUV. Mathematical Problems in Engineering, 3(1), 231-243.10.1155/2015/752360
  3. 3. Daqi Zhu, Huan Huang, and Simon X. Yang, 2013. Dynamic Task Assignment and Path Planning of Multi- AUV System Based on an Improved Self-Organizing Map and Velo city Synthesis Method in Three-Dimensional Underwater Workspace. IEEE Transactions on Cybernetics, 43(2), 504-514.10.1109/TSMCB.2012.221021222949070
  4. 4. DF Yuan, L Cong-Ying, 2013.Application of Improved Ant Colony Algorithm for Quadrat ic Assignment Problems. Computer and Modernization, 3(1), 9-11.
  5. 5. Parag C. Pendharkar, 2015. An ant colony optimization heuristic for constrained task alloc ation problem. Journal of Computational Science, 7(1), 37-47.10.1016/j.jocs.2015.01.001
  6. 6. Celal Ozkale, Alpaslan Fığlalı, 2013. Evaluation of the multiobjective ant colony algorithm performances on biobjective quadratic assignment problems. Applied Mathematical Modelling, 37(1), 7822-7838.10.1016/j.apm.2013.01.045
  7. 7. Zahra Beheshti, Siti Mariyam Shamsuddin, 2015. Nonparametric particle swarm optimization for global optimization. Applied Soft Computing, 28(2), 345-359.10.1016/j.asoc.2014.12.015
  8. 8. AI Awad, NA El-Hefnawy, HM Abdel_Kader, 2015. Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments. Procedia Computer Science, 35(1), 920-929.10.1016/j.procs.2015.09.064
  9. 9. Eliseo Ferrante, Ali Emre Turgut, Edgar Duenez- Guzman, Marco Dorigo,Tom Wenseleers,2015. Evolution of Self-Organized Task Specialization in Robot Swarms. Computational Biology, 10(3), 1371-1392.
  10. 10. Christina M. Grozinger, Jessica Richards, Heather R. Mattila, 2014. From molecules to societies: mechanisms regulating swarming behavior in honey bees. Apidologie, 45(3), 327-346.10.1007/s13592-013-0253-2
  11. 11. D Karaboga, Basturk, 2007.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.10.1007/s10898-007-9149-x
  12. 12. R Akbari, A Mohammadi, K Ziarati, 2010. A novel bee swarm optimization algorithm for numerical function optimization. Communications in Nonlinear Science and Numerica Simulat, 15(5), 3142-3155.10.1016/j.cnsns.2009.11.003
  13. 13. Hsing-Chih Tsai, 2014. Integrating the artificial bee colony and bees algorithm to face constrained optimization problems. Information Sciences, 258(2), 80-93.10.1016/j.ins.2013.09.015
  14. 14. Dervis Karaboga, Beyza Gorkemli, Celal Ozturk,Nurhan Karaboga, 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57.10.1007/s10462-012-9328-0
  15. 15. Pinar Civicioglu, Erkan Besdok, 2013. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(2), 315-346.10.1007/s10462-011-9276-0
  16. 16. Peio Loubierea, Astrid Jourdana, Patrick Siarryb, achid Chelouaha, 2016. A sensitivity analysis method for driving the Artificial Bee Colony algorithm’s search process. Applied Soft Computing, 41(1), 515-531.10.1016/j.asoc.2015.12.044
  17. 17. D Karaboga, B Akay, 2009. A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31(1), 61-85. 10.1007/s10462-009-9127-4
  18. 18. Celal Ozturk, Emrah Hancer, Dervis Karaboga, 2015. Improved clustering criterion for image clustering with artificial bee colony algorithm. Pattern Analysis and Applications, 18(3), 587-599.10.1007/s10044-014-0365-y
  19. 19. J Sun, W Fang, X Wu,2014. Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection. Evolutionary Computation, 20(3), 349-393.10.1162/EVCO_a_0004921905841
  20. 20. Miha Mlakar, Dejan Petelin, Tea Tušar, Bogdan Filipič, 2015. GP-DEMO: Differential evolution for multiobjective optimization based on Gaussian process models. European Journal of Operational Research, 243(2), 347-361.10.1016/j.ejor.2014.04.011
  21. 21. A. C. Biju, T. Aruldoss Albert Victoire, and Kumaresan Mohanasundaram, 2015. An Improved Differential Evolution Solution for Software Project Scheduling Problem. Scientific World Journal, 2(1), 1-9.10.1155/2015/232193460604326495419
  22. 22. Sk. Minhazul Islam, Swagatam Das, 2012. An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 482-500.10.1109/TSMCB.2011.216796622010153
  23. 23. Bahriye Akay, Dervis Karaboga, 2012. Artificial bee colony has a differential evolution algorithm search strategy. Journal of Intelligent Manufacturing, 23(4), 1001-1014.
  24. 24. A Bouaziz, A Draa, S Chikhi, 2013. A Quantum-inspired Artificial Bee Colony algorithm for numerical optimization. In: International Symposium on Programming & Systems. Algiers Algeria. pp. 81-88.10.1109/ISPS.2013.6581498
  25. 25. X li, M yin, 2014. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynamics, 77(1), 61-71.10.1007/s11071-014-1273-9
  26. 26. D Karaboga, B Gorkemli, C Ozturk, N Karaboga, 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1),21-5710.1007/s10462-012-9328-0
DOI: https://doi.org/10.1515/pomr-2017-0106 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 65 - 71
Published on: Nov 22, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Jianjun Li, Ru Bo Zhang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.