Have a personal or library account? Click to login

Optimized Design and Analysis of Offshore Beidou Maritime Foundation Reinforcement System Pseudolite Ranging-Codes

Open Access
|Sep 2017

References

  1. 1. Ji L, Shan Q: The Development Outline and Latest Evolution of Global Navigation Satellite System. GNSS World of China, Vol. 37, no. 5, pp. 56-61, 2012.
  2. 2. Dong S: The Compass Time System and Its Interoperation. APPLIED MECHANICS AND MATERIALS, Vol. 239, pp. 548-551, 2012.10.4028/www.scientific.net/AMM.239-240.548
  3. 3. Sun F, Liu S, Zhu X: Research and Progress of Beidou Satellite Navigation System. Sciece China: Information Sciences, Vol. 55, no. 12, pp. 2899-2907, 2012.
  4. 4. Yang C, Lu X, Wang X: Performance Analysis for Ranging Codes of Satellite Navigation System. Journal of Time and Frequency, Vol. 36, no. 3, pp. 173-180, 2013.
  5. 5. TANG J: Developing and Applying Analysis of BeiDou Navigation Satellites Regional System. Global Positioning System, Vol. 38, no. 5, pp. 47-52, 2013.
  6. 6. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen Pand Nakamura S: Initial assessment of the COMPASS/ BeiDou-2 regional navigation satellite system. GPS Solutions, Vol. 17, no. 2, pp. 211-222, 2012. 10.1007/s10291-012-0272-x
  7. 7. Wu T, Zhang Y, Liu Y: BD/GPS integrated positioning method. Remote Sensing, Vol. 5, pp. 1087-1097, 2014.
  8. 8. WANG X, FAN A, FU Z: The Design of BeiDou Pseudo-satellite Compatible Receiver. Wuhan: China Satellite Navigation Conference, 2013.
  9. 9. Liu D, BO Y, WU P: The Research on DOP of Beidou Positioning System Using Pseudolite. Fire Control & Command Control. Vol. 34, no. 7, pp. 137-139, 2009.
  10. 10. Hikawa H: Frequency-based multilayer neural network with on-chip learning and enhanced neuron characteristics. IEEE Transactions on Neural Networks, Vol. 10, no. 3, pp. 545-53, 1995.10.1109/72.76171118252552
  11. 11. Serpen G, Gao Z: Complexity Analysis of Multilayer Perceptron Neural Network Embedded into a Wireless Sensor Network. Procedia Computer Science, Vol. 36, pp.192-197, 2014.10.1016/j.procs.2014.09.078
  12. 12. Kumar A, Joshi H, P. S: Neural Network Approach for Automatic Landuse Classification of Satellite Images: One-Against-Rest and Multi-Class Classifiers. International Journal of Computer Applications, pp.134, 2016.10.5120/ijca2016908148
  13. 13. Raza M Q, Khosravi A: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable & Sustainable Energy Reviews, Vol. 50, pp.1352-1372, 2015.
  14. 14. Hosseini S M S, Maleki A, Gholamian M R: Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, Vol. 37, no. 7, pp.5259-5264, 2010.
  15. 15. Liu Y F, Li M Y: Application of Data Mining Technology in CRM. Applied Mechanics & Materials, Vol. 513, pp. 2103-2106, 2014.
  16. 16. Maheswari R U, Mahesan S S: Role of Data Mining in CRM. International Journal of Engineering Research, Vol. 3, no. 2, pp. 75-78, 2014.10.17950/ijer/v3s2/208
DOI: https://doi.org/10.1515/pomr-2017-0063 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 45 - 52
Published on: Sep 13, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Deliang Su, Anan Zhou, Zilin Zhou, Wei Chen, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.