Have a personal or library account? Click to login

Fuzzy Method and Neural Network Model Parallel Implementation of Multi-Layer Neural Network Based on Cloud Computing for Real Time Data Transmission in Large Offshore Platform

By:
Zhang Hu and  Wei Qin  
Open Access
|Sep 2017

References

  1. 1. Bhandarkar S M, Wang X: Efficient parallel implementation of the multi-layer perceptron on an SIMD mesh architecture. Neural Parallel & Scientific Computations, Vol. 4, no. 1, pp. 69-82, 1996.
  2. 2. Li X J, Li L: IP Core Based Hardware Implementation of Multi-Layer Perceptrons on FPGAs: A Parallel Approach. Advanced Materials Research, Vol. 433, pp.:5647-5653, 2012.10.4028/www.scientific.net/AMR.433-440.5647
  3. 3. Kalaitzakis K, Stavrakakis G S, Anagnostakis E M: Shortterm load forecasting based on artificial neural networks parallel implementation. Electric Power Systems Research, Vol. 63, no. 3, pp.185-196, 2012.10.1016/S0378-7796(02)00123-2
  4. 4. Kim Y C, Shanblatt M A: Architecture and statistical model of a pulse-mode digital multilayer neural network. IEEE Transactions on Neural Networks, Vol. 6, no. 5, pp.1109- 1118, 1995.
  5. 5. Hikawa H: Frequency-based multilayer neural network with on-chip learning and enhanced neuron characteristics. IEEE Transactions on Neural Networks, Vol. 10, no. 3, pp.:545-53, 1995.10.1109/72.76171118252552
  6. 6. Serpen G, Gao Z: Complexity Analysis of Multilayer Perceptron Neural Network Embedded into a Wireless Sensor Network. Procedia Computer Science, Vol. 36, pp.192-197, 2014.10.1016/j.procs.2014.09.078
  7. 7. Kumar A, Joshi H, P. S: Neural Network Approach for Automatic Landuse Classification of Satellite Images: One- Against-Rest and Multi-Class Classifiers. International Journal of Computer Applications, pp.134, 2016.10.5120/ijca2016908148
  8. 8. Raza M Q, Khosravi A: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable & Sustainable Energy Reviews, Vol. 50, pp.1352-1372, 2015.
  9. 9. Ahmedalazzawi N: Automatic Recognition System of Infant Cry based on F-Transform. International Journal of Computer Applications, Vol. 102, no. 12, pp.28-32, 2014.10.5120/17869-8800
  10. 10. Druitt C M, Alici G: Intelligent Control of Electroactive Polymer Actuators Based on Fuzzy and Neurofuzzy Methodologies. Mechatronics IEEE/ASME Transactions on, Vol. 19, no. 6, pp.1951-1962, 2014.
  11. 11. Francesquini E, Castro M, Penna P H: On the energy efficiency and performance of irregular application executions on multicore, NUMA and manycore platforms. Journal of Parallel & Distributed Computing, Vol. 76, pp.32-48, 2015.10.1016/j.jpdc.2014.11.002
  12. 12. Li Y, Tang X, Cai W: Play Request Dispatching for Efficient Virtual Machine Usage in Cloud Gaming. IEEE Transactions on Circuits & Systems for Video Technology, pp. 1-11, 2015.10.1109/TCSVT.2015.2450152
DOI: https://doi.org/10.1515/pomr-2017-0062 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 39 - 44
Published on: Sep 13, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Zhang Hu, Wei Qin, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.