Have a personal or library account? Click to login
Agent-Based Evacuation in Passenger Ships Using a Goal-Driven Decision-Making Model Cover

Agent-Based Evacuation in Passenger Ships Using a Goal-Driven Decision-Making Model

By: Baocheng Ni,  Zhen Li and  Xiang Li  
Open Access
|Jul 2017

References

  1. 1. IMO: Guidelines for evacuation analysis for new and existing passenger ships. International Maritime Organization, pp. 1-46, 2007.
  2. 2. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), pp. 601-644, 1983.10.1103/RevModPhys.55.601
  3. 3. Burstedde, C., Klauck, K., Schadschneider, A. and Zittartz, J.: Simulation of pedestrian dynamics using a twodimensional cellular automaton. Physica A: Statistical Mechanics and its Applications, 295(3-4), pp. 507-525, 2001.
  4. 4. Guo, R. Y.: New insights into discretization effects in cellular automata models for pedestrian evacuation. Physica A: Statistical Mechanics and its Applications, 400, pp. 1-11, 2014.
  5. 5. Guo, R. Y., Huang, H. J. and Wong, S. C.: Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results. Transportation Research Part B: Methodological, 46(6), pp. 669-686, 2012.
  6. 6. Guo, R.-Y., Huang, H.-J. and Wong, S. C.: A potential field approach to the modeling of route choice in pedestrian evacuation. Journal of Statistical Mechanics: Theory and Experiment, 2013(2), p. P02010, 2013.
  7. 7. Tang, T. Q., Chen, L., Guo, R. Y. and Shang, H. Y.: An evacuation model accounting for elementary students’ individual properties. Physica A: Statistical Mechanics and its Applications, 440, pp. 49-56, 2015.
  8. 8. Ha, S., Ku, N. K., Roh, M. Il and Lee, K. Y.: Cell-based evacuation simulation considering human behavior in a passenger ship. Ocean Engineering, 53, pp. 138-152, 2012.10.1016/j.oceaneng.2012.05.019
  9. 9. Park, K. P., Ham, S. H. and Ha, S.: Validation of advanced evacuation analysis on passenger ships using experimental scenario and data of full-scale evacuation. Computers in Industry, 71, pp. 103-115, 2015.10.1016/j.compind.2015.03.009
  10. 10. Helbing, D. and Molnar, P.: Social force model for pedestrian dynamics. Physical Review E, 51(5), pp. 4282-4286, 1995.
  11. 11. Helbing, D., Farkas, I. and Vicsek, T.: Simulating dynamical features of escape panic. Nature, 407(6803), pp. 487-490, 2000.
  12. 12. Yuen, J. K. K. and Lee, E. W. M.: The effect of overtaking behavior on unidirectional pedestrian flow. Safety Science, 50(8), pp. 1704-1714, 2012.
  13. 13. Heliovaara, S., Korhonen, T., Hostikka, S. and Ehtamo, H.: Counterflow model for agent-based simulation of crowd dynamics. Building and Environment, 48(1), pp. 89-100, 2012.10.1016/j.buildenv.2011.08.020
  14. 14. Xu, M., Wu, Y., Lv, P., Jiang, H., Luo, M. and Ye, Y.: MiSFM: On combination of Mutual Information and Social Force Model towards simulating crowd evacuation. Neurocomputing, 168, pp. 529-537, 2015.10.1016/j.neucom.2015.05.074
  15. 15. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl. 3), pp. 7280-7287, 2002.
  16. 16. Tan, L., Hu, M. and Lin, H.: Agent-based simulation of building evacuation: Combining human behavior with predictable spatial accessibility in a fire emergency. Information Sciences, 295, pp. 53-66, 2015.10.1016/j.ins.2014.09.029
  17. 17. Tang, F. and Ren, A.: GIS-based 3D evacuation simulation for indoor fire. Building and Environment, 49(1), pp. 193-202, 2012.10.1016/j.buildenv.2011.09.021
  18. 18. Hart, P. E., Nilsson, N. J. and Raphael, B.: Correction to ‘A Formal Basis for the Heuristic Determination of Minimum Cost Paths’. ACM SIGART Bulletin, 37(37), pp. 28-29, 1972.10.1145/1056777.1056779
  19. 19. Thompson, P. S. and Marchant, E. W.: Testing and Application of the Computer Model ‘SIMULEX’. Fire Safety Journal, 24(2), pp. 149-166, 1995.10.1016/0379-7112(95)00020-T
  20. 20. Korhonen, T. and Hostikka, S.: Fire Dynamics Simulator with Evacuation: FDS+Evac, Technical Reference and User’s Guide (FDS 5.5.0, Evac 2.2.1). VTT Technical Research Centre of Finland, 2010.
  21. 21. Reynolds, C. W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4), pp. 25-34, 1987.10.1145/37402.37406
  22. 22. Hartman, C. and Beneš, B.: Autonomous boids. 17(3-4), pp. 199-206, 2006.10.1002/cav.123
  23. 23. Langston, P. A., Masling, R. and Asmar, B. N.: Crowd dynamics discrete element multi-circle model. Safety Science, 44(5), pp. 395-417, 2006.10.1016/j.ssci.2005.11.007
  24. 24. Russell, S. J. and Norvig, P.: Artificial Intelligence: A Modern Approach. Third Edit, Prentice Hall, Upper Saddle River, 2010.
  25. 25. Thunderhead Engineering: Pathfinder:Verification and Validation. Pathfinder, Thunderhead Engineering, Manhattan, 2016.
DOI: https://doi.org/10.1515/pomr-2017-0050 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 56 - 67
Published on: Jul 22, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Baocheng Ni, Zhen Li, Xiang Li, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.