Have a personal or library account? Click to login
Causality in Models of Thermal Processes in Ship Engine Rooms with the Use of Bond Graph (BG) Method Cover

Causality in Models of Thermal Processes in Ship Engine Rooms with the Use of Bond Graph (BG) Method

Open Access
|May 2017

References

  1. 1. Borutzki W.: Bond Graphs a Metodology for Modelling Multidisciplinary Dynamic Systems. Springer, (2010).
  2. 2. Cichy M., Kropiwnicki J., Kneba Z.: A Model of Thermal Energy Storage According to the Convention of Bond Graphs (BG) and State Equations (SE). Polish Maritime Research, Vol. 22, nr 4 (88) (2015), pp. 41-47.
  3. 3. Cichy M.: Modelowanie systemów energetycznych (Modeling of energetic systems). Wydawnictwo Politechniki Gdańskiej. Gdańsk, (2001), (in Polish).
  4. 4. Cieśliński J. T., Mosdorf R.: Gas bubble dynamics - experiment and fractal analysis. International Journal of Heat and Mass Transfer Volume 48, Issue 9, (2005), pp. 1808-1818.
  5. 5. Creyx M., et al.: Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach. Energy 102 (2016), pp. 31-43.
  6. 6. Deja M., Siemiątkowski M. S.: Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing (2013), Volume 24, Issue 4, pp. 831-846.
  7. 7. Domachowski Z., Dzida M.: Inlet Air Fogging of Marine Gas Turbine in Power Output Loss Compensation. Polish Maritime Research 4 (88) (2015), Vol. 22, pp. 53-58.
  8. 8. Hubbard M., Brewer J. W.: Pseudo Bond Graphs of circulating fluids with Application to Solar Heating Design. Journal of the Franklin Institute Vol. 311, No 6, (1981), pp. 339-354.
  9. 9. Kaliński K. J., Galewski M. A.: Chatter vibration surveillance by the optimal-linear spindle speed control. Mechanical Systems and Signal Processing Volume 25, Issue 1, (2011), pp. 383-399.
  10. 10. Karnopp D. C., Margolis D. L., Rosenberg R. C.: System dynamics: a unified approach. Wiley, New York, (1990).
  11. 11. Korczewski Z., Zacharewicz M.: Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility. Transactions of the Institute of Measurement and Control. Vol. 34, No. 8 (2012), pp.937-946.
  12. 12. Korczewski Z.: Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines. Part II Dynamic Measurements. Polish Maritime Research 1 (89) (2016) Vol. 23, pp. 68-76.10.1515/pomr-2016-0010
  13. 13. Kortas P., Kropiwnicki J.: Analysis of accumulation possibility of energy dissipated in the braking process of train driven by hybrid locomotive. Combustion Engines, (2015), pp. 631-638.
  14. 14. Kowalczyk T., Głuch J., Ziółkowski P.: Analysis of Possible Application of High-Temperature Nuclear Reactors to Contemporary Large-Output Steam Power Plants on Ships. Polish Maritime Research 2 (90) (2016), Vol. 23, pp. 32-41.
  15. 15. Kropiwnicki J.: Comparison of energy efficiency of vehicles powered by different fuels. Combustion Engines, nr 3, (2012), pp .34-43.10.19206/CE-117029
  16. 16. Litwin W., Olszewski A.: Water-Lubricated Sintered Bronze Journal Bearings - Theoretical and Experimental Research. Tribology Transactions. Vol. 57, No. 1 (2014), pp.114-122.
  17. 17. M.S. Jha, et al.: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework. Computers and Chemical Engineering 95 (2016), pp. 216-230.
  18. 18. Mikielewicz D., Mikielewicz J., Tesmar J.: Improved semiempirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes. International Journal of Heat and Mass Transfer Volume 50, Issues 19-20, (2007), pp. 3949-3956.
  19. 19. Mishra C., Samantaray A.K., Chakraborty G.: Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions. Journal of Sound and Vibration 377 (2016), pp. 302-330.
  20. 20. Paynter H.M.: Analysis and Design of Engineering Systems. The MIT Press Cambridge, Massachusetts (1961).
  21. 21. Sagawa J.K., Nagano M.S., Neto M.S.: A closed-loop model of a multi-station and multi-product manufacturing system using bond graphs and hybrid controllers. European Journal of Operational Research (2016), pp. 1-15.
  22. 22. Shoureshi R., McLaughlin K. M.: Analytical and Experimental Investigation of Flow-Reversibile Heat Exchangers Using Temperature-Entropy Bond Graphs. Journal of Dynamic Systems, Measurement, and Control, Vol. 106 (2), (1984), pp. 170-175.
  23. 23. Silva L.I., et al.: Coupling Bond Graph and Energetic Macroscopic Representation for Electric Vehicle Simulation: Mechatronics 24 (2014), pp. 906-913.
  24. 24. Sliwinski P.: The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor. Archives of Civil and Mechanical Engineering, vol. 16, iss. 4 (2016), pp. 634-644.
  25. 25. Sosnovsky E., Forget B.: Bond graph representation of nuclear reactor point kinetics and nearly incompressible thermal hydraulics. Annals of Nuclear Energy 68 (2014), pp. 15-29.
  26. 26. Thoma J. U., Boumama B. O: Modelling and Simulation in Thermal and Chemical Engineering - a Bond Graph Approach. Springer, (2000).
  27. 27. Thoma J. U.: Simulation by Bondgraphs. Springer, Berlin, (1990).10.1007/978-3-642-83922-1
  28. 28. Wellstead P.E.: Introduction to System Modeling. Academic Press, London (1979).
DOI: https://doi.org/10.1515/pomr-2017-0018 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 32 - 37
Published on: May 23, 2017
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Marian Cichy, Zbigniew Kneba, Jacek Kropiwnicki, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.