Have a personal or library account? Click to login
The Sensitivity of State Differential Game Vessel Traffic Model Cover

The Sensitivity of State Differential Game Vessel Traffic Model

By: Józef Lisowski  
Open Access
|Jun 2016

References

  1. 1. Astrom K.J.: Model uncertainty and robust control. Lecture notes on iterative identification and control design. Lund Institute of Technology, Sweden, 2000, pp. 63-100.
  2. 2. Cruz J.B.: Feedback systems. Mc Graw-Hill Book Company, New York, 1972.
  3. 3. Dorf R.C. and Bishop R.H.: Modern control systems. Addison-Wesley, California, 1998.
  4. 4. Eslami M.: Theory of sensitivity in dynamic systems. Springer-Verlag, Berlin, 1994.10.1007/978-3-662-01632-9
  5. 5. Fossen T.I.: Marine craft hydrodynamics and motion control. Wiley, Trondheim, 2011.10.1002/9781119994138
  6. 6. Fujarewicz K.: Structural sensitivity analysis of systems with time delay (in Polish), XVIII Krajowa Konferencja Procesów Dyskretnych (18th Domestic Conference on Discrete Systems), Zakopane, 2014.
  7. 7. Gierusz W. and Lebkowski A.: The research ship “Gdynia”. Polish Maritime Research, Vol. 19, No. 74, 2012, pp. 11-18.10.2478/v10012-012-0017-3
  8. 8. Isaacs R.: Differential games. John Wiley and Sons, New York, 1965.
  9. 9. Lazarowska A.: Safe ship control method with the use of ant colony optimization. Solid State Phenomena, Vol. 210, 2014, pp. 95–101.10.4028/www.scientific.net/SSP.210.234
  10. 10. Miller A., Rybczak M.: Model predictive control algorithm verification with the use of real time xPC target platform. Joint Proceedings, No. 84, 2014, pp. 73-84.
  11. 11. Mohamed-Seghir M.: The branch-and-bound method, genetic algorithm, and dynamic programming to determine a safe ship trajectory in fuzzy environment. 18th International Conference on Knowledge Based and Intelligent Information and Engineering Systems. Procedia Computer Science, No. 35, 2014, pp. 634-643.10.1016/j.procs.2014.08.115
  12. 12. Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic game theory. Cambridge University Press, New York, 2007, pp. 717-733.10.1017/CBO9780511800481
  13. 13. Nise N.S.: Control systems engineering. Wiley, California, 2015.
  14. 14. Osborne M.J.: An introduction to game theory. Oxford University Press, New York, 2004.
  15. 15. Rosenwasser E. and Yusupov R.: Sensitivity of automatic control systems. CRC Press, Boca Raton, 2000.
  16. 16. Rudnicki J.: Application issues of the semi-Markov reliability model. Polish Maritime Research, Vol. 22, No. 1, pp. 55-64.10.1515/pomr-2015-0008
  17. 17. Sanchez-Pena R.S. and Sznaier M.: Robust systems theory and applications. Wiley, New York, 1998.
  18. 18. Skogestad S. and Postlethwaite I.: Multivariable feedback control. Wiley, Chichester, 2005.
  19. 19. Szlapczynski R.: Evolutionary sets of safe ship trajectories with speed reduction manoeuvres within traffic separation schemes. Polish Maritime Research, Vol. 81, No. 1, 2014, pp. 20-27.10.2478/pomr-2014-0004
  20. 20. Tomera M.: Dynamic positioning system for a ship on harbour manoeuvring with different observers. Experimental results. Polish Maritime Research, Vol. 83, No. 3, 2014, pp. 13-21.10.2478/pomr-2014-0025
  21. 21. Wierzbicki A.: Models and sensitivity of control systems. Wydawnictwa Naukowo-Techniczne, Warszawa, 1977.
  22. 22. Zwierzewicz Z.: The design of ship autopilot by applying observer – based feedback linearization. Polish Maritime Research, Vol. 22, No. 1, pp. 16-21.10.1515/pomr-2015-0003
DOI: https://doi.org/10.1515/pomr-2016-0015 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 14 - 18
Published on: Jun 30, 2016
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Józef Lisowski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.