Have a personal or library account? Click to login
Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners Cover

Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

Open Access
|Jul 2015

References

  1. 1. [1]Reissner E.: The effect of transverse shear deformation on the bending of elastic plate. Transactions of ASME Journal of Applied Mechanics, 12, (1945), pp. 69-7710.1115/1.4009435
  2. 2. Mindlin R. D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics, 18, 1(1951), pp. 31-38
  3. 3. Liew K. M., Xiang Y., Kitipornchai S.: Research on thick plate vibration: a literature survey. Journal of Sound and Vibration, 180, (1995), pp. 163-176
  4. 4. Senjanović I., Vladimir N., Tomić M.: An advanced theory of moderately thick plate vibrations. Journal of Sound and Vibration, 332, (2013), pp. 1868-1880
  5. 5. Senjanović I., Tomić M., Vladimir N.: Cho D. S.: Analytical solution for free vibrations of a moderately thick rectangular plate. Mathematical Problems in Engineering, 2013, (2013), Article ID 207460
  6. 6. Liew K. M., Xiang Y., Kitipornchai S.: Transverse vibration of thick plates – I. Comprehensive sets of boundary conditions. Computers and Structures, 49, (1993), pp. 1-29
  7. 7. Dawe D. J., Roufaeil O. L.: Rayleigh-Ritz vibration analysis of Mindlin plates. Journal of Sound and Vibration, 69, 3(1980), pp. 345-359
  8. 8. Kim K.H., Kim B.H., Choi T.M., Cho D.S.: Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method. International Journal of Naval Architecture and Ocean Engineering, 4, (2012), pp. 267-280
  9. 9. Chung J.H., Chung T.Y., Kim K.C.: Vibration analysis of orthotropic Mindlin plates with edges elastically restrained against rotation. Journal of Sound and Vibration, 163, (1993), pp. 151-163
  10. 10. Auricchio F., Taylor R.L.: A triangular thick plate finite element with an exact thin limit. Finite Elements in Analysis and Design, 19, (1995), pp. 57-68
  11. 11. Lovadina C.: Analysis of a mixed finite element method for the Reissner-Mindlin plate problems. Computer Methods in Applied Mechanics and Engineering, 163, (1998), pp. 71-8510.1016/S0045-7825(98)00003-6
  12. 12. Hughes T.J.R., Tezduyar T.: Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. Journal of Applied Mechanics, 48, (1981), pp. 587-596
  13. 13. Bletzinger K., Bischoff M., Ramm E.: A unified approach for shear-locking free triangular and rectangular shell finite elements. Computers and Structures, 75, (2000), pp. 321-334
  14. 14. Nguyen-Xuan H., Liu G. R., Thai-Hong C.: Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 199, (2010), pp. 471-489
  15. 15. Senjanović I., Vladimir N., Hadžić N. Modified Mindlin plate theory and shear locking-free finite element formulation. Mechanics Research Communications, 55, (2014), pp. 95-104
  16. 16. Cho D.S., Vladimir N., Choi T.M.: Approximate natural vibration analysis of rectangular plates with openings using assumed mode method. International Journal of Naval Architecture and Ocean Engineering, 5, 3(2013), pp. 478-491
  17. 17. Paramasivam P.: Free vibration of square plates with openings. Journal of Sound of Vibration, 30, (1973), pp. 173-17810.1016/S0022-460X(73)80111-7
  18. 18. Kwak M.K., Han S.: Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. Journal of Sound of Vibration, 306, (2007), pp. 12-30
  19. 19. Grossi R.O., del V. Arenas B., Laura P.A.A.: Free vibration of rectangular plates with circular openings. Ocean Engineering, 24, 1(1997), pp. 19-24
  20. 20. Monahan L.J., Nemergut P.J., Maddux G.E.: Natural frequencies and mode shapes of plates with interior cut-outs. The Shock and Vibration Bulletin, 41, (1970), pp. 37-49
  21. 21. Cho D.S., Vladimir N., Choi T.M.: Natural vibration analysis of stiffened panels with arbitrary edge constraints using the assumed mode method. Proceedings of the IMechE, Part M: Journal of Engineering for the Maritime Environment, (2014), DOI: 10.1177/1475090214521179, published online10.1177/1475090214521179
  22. 22. Samanta A., Mukhopadhyay M.: Free vibration analysis of stiffened shells by the finite element technique. European Journal of Mechanics, A Solids, 23, (2004), pp. 159-179
  23. 23. Sivasubramonian B., Kulkarni A. M., Rao G.V.; Krishnan A.: Free vibration of curved panels with cutouts. Journal of Sound and Vibration, 200, (1997), pp. 227-234
  24. 24. Sivasubramonian B., Rao G.V., Krishnan A.: Free vibration of longitudinally stiffened curved panels with cutout. Journal of Sound and Vibration, 226, 1(1999), pp. 41-55
  25. 25. Srivastava A.K.L.: Vibration of stiffened plates with cutout subjected to partial edge loading. Journal of the Institution of Engineers (India) Series A, 93, 2(2012), pp. 129-13510.1007/s40030-012-0018-3
  26. 26. MSC. MD Nastran 2010 Dynamic analysis user’s guide. MSC Software, 2010
DOI: https://doi.org/10.1515/pomr-2015-0019 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 71 - 78
Published on: Jul 10, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Dae Seung Cho, Nikola Vladimir, Tae Muk Choi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.