Have a personal or library account? Click to login
Analysis of the non Isothermal Distributed Activation Energy Model for Biomass Pyrolysis by Fuzzy Gaussian Distribution Cover

Analysis of the non Isothermal Distributed Activation Energy Model for Biomass Pyrolysis by Fuzzy Gaussian Distribution

Open Access
|Aug 2016

References

  1. 1. Bender, C.M., and Orszag, S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 247-316.
  2. 2. Cai, J., Ji, L.(2007). Pattern Search Method For Determination Of DAEM Kinetic Parameters From Nonisothermal TGA Data Of Biomass, Journal of Mathematical Chemistry, 42(3): 547-553.10.1007/s10910-006-9130-9
  3. 3. Cai J.M., Liu, R.H. (2007). Parametric study of the nonisothermal nth-order Distributed activation energy model involved the Weibull distribution for biomass pyrolysis, 89, 971-975.10.1007/s10973-006-8266-y
  4. 4. Cai, J., Liu R. (2008). New distributed activation energy model: Numerical solution and application to pyrolysis kinetics of some types of biomass”, Bioresource Technology, 99, 2795-2799.10.1016/j.biortech.2007.06.033
  5. 5. Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press, 227-256.
  6. 6. Howard, J.B. (1981). Fundamentals of coal pyrolysis and hydropyrolysis, in Chemistry of Coal Utilization, Chapter 12 (Edited by M.A. Elliott), Wiley and Sons, 359-386.
  7. 7. Kerf, J.De . (1975). A bibliography on fuzzy sets. J. comput. Appl. Math 1, 205-212.10.1016/0771-050X(75)90036-4
  8. 8. McGuinness, M.J., Donskoi, E., and McElwain, D.L.S. (1999). Asymptotic Approximations to the Distributed Activation Energy Model Appl. Math. Lett., 12:27-34.
  9. 9. Niksa, S., and Lau, C-W. (1993). Global rates of devolatilization for various coal types Combust. Flame 94:293.
  10. 10. Pitt, G.J. (1962). The kinetics of the evolution of volatile products from coal. Fuel 1:267.
  11. 11. Türksen, I.B. (2003). A perspective on the Philosophical Grounding of fuzzy Theories, Proceedings of IFSA, 1-15.10.1007/3-540-44967-1_1
  12. 12. Vand, A. (1943). Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc. Lond. A (55):222.
  13. 13. Zadeh L.A. (1965). Fuzzy sets. Information and Control. 8: 338 -353.
  14. 14. Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1: 3-28.
Language: English
Page range: 32 - 41
Published on: Aug 10, 2016
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Alok Dhaundiyal, Suraj B. Singh, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.