Have a personal or library account? Click to login
Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging Cover

Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging

Open Access
|Sep 2016

References

  1. [1] Senda M, Nishizawa S, Yonekura Y, et al. Measurement of arterial time-activity curve by monitoring continuously drawn arterial blood with an external detector: errors and corrections. Ann Nucl Med. 1988;2(1):7-12.10.1007/BF031645803275106
  2. [2] Boellaard R, Van Lingen A, Van Balen SC, et al. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med. 2001; 28(1):81-89.10.1007/s00259000040511202456
  3. [3] Convert L, Morin-Brassard G, Cadorette J, et al. A new tool for molecular imaging: the microvolumetric Beta blood counter. J Nucl Med. 2007;48(7):1197-1206.10.2967/jnumed.107.04260617574990
  4. [4] Ranicar AS, Williams CW, Schnorr L, et al. The on-line monitoring of continuously withdrawn arterial blood during PET studies using a single BGO/photomultiplier assembly and non-stick tubing. Med Prog Technol. 1991;17(3-4):259-264.
  5. [5] Lin KP, Huang SC, Choi Y, Brunken, et al. Correction of spillover radioactivities for estimation of the blood time-activity curve from the imaged LV chamber in cardiac dynamic FDG PET studies. Phys Med Biol. 1995;40(4):629-642.10.1088/0031-9155/40/4/0097610118
  6. [6] Mourik JE, Lubberink M, Schuitemaker A, et al. Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging. 2009;36(3): 463-471.10.1007/s00259-008-0986-819030855
  7. [7] Houston AS. The effect of apex-finding errors on factor images obtained from factor analysis and oblique transformation. Phys Med Biol. 1984;29(9):1109-1116.10.1088/0031-9155/29/9/0076483975
  8. [8] Wu HM, Hoh CK, Choi Y, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36(9):1714-1722.
  9. [9] Bentourkia M. Kinetic modeling of PET-FDG in the brain without blood sampling. Comput Med Imaging Graph. 2006;30(8):447-451.10.1016/j.compmedimag.2006.07.00216978837
  10. [10] Buvat I, Benali H, Frouin F, et al. Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol. 1993;38(1):123-138.10.1088/0031-9155/38/1/0098426863
  11. [11] Lee JS, Lee DS, Ahn JY, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42(6):938-943.
  12. [12] Naganawa M, Kimura Y, Ishii K, et al. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005;52(2):201-209.10.1109/TBME.2004.84019315709657
  13. [13] Naganawa M, Kimura Y, Ishii K, et al. Temporal and spatial blood information estimation using Bayesian ICA in dynamic cerebral positron emission tomography. Dig Sig Process. 2007; 17(5):979-993.10.1016/j.dsp.2007.03.002
  14. [14] Chen K, Chen X, Renaut R, et al. Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images. Phys Med Biol. 2007;52(23):7055-7071.10.1088/0031-9155/52/23/019
  15. [15] Su KH, Lee JS, Yang YW, et al. Partial volume correction of the microPET blood input function using ensemble learning independent component analysis. Phys Med Biol. 2009;54(6):1823-1846.10.1088/0031-9155/54/6/026
  16. [16] Margadan-Mendez M, Juslin A, Nesterov SV, et al. ICA Based Automatic Segmentation of Dynamic H215O Cardiac PET Images. IEEE Trans Info Tech Biomed. 2010;14(3):795-802.10.1109/TITB.2007.910744
  17. [17] Fu Z, Tantawy MN, Peterson TE. Ensemble learning (EL) independent component analysis (ICA) approach to derive blood input function from FDG-PET images in small animal. IEEE Nucl Sci Symp Conf Rec. 2006;5:2708-2712.10.1109/NSSMIC.2006.356439
  18. [18] Mabrouk R, Dubeau F, Bentabet L. Dynamic cardiac PET imaging: extraction of time-activity curves using ICA and a generalized Gaussian distribution model. IEEE Trans Biomed Eng. 2012;60(1):63-71.10.1109/TBME.2012.2221463
  19. [19] Moussaoui S, Brie D, Mohammad-Djafari A, et al. Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Trans Sig Process. 2006;54(11):4133-4145.10.1109/TSP.2006.880310
  20. [20] Berradja K, Boughanmi N. Assessment of brain glucose metabolism with input function determined from Brain PET images by means of Bayesian ICA and MCMC methods. Comput Med Imaging Graph. 2012;36(8):620-626.10.1016/j.compmedimag.2012.07.002
  21. [21] Robert C. Monte Carlo Statistical Methods. Berlin: Springer-Verlag; 1999.10.1007/978-1-4757-3071-5
  22. [22] Fitzgerald W. Markov chain Monte Carlo methods with applications to signal processing. Sig Process. 2001;81(1):3-18.10.1016/S0165-1684(00)00187-0
  23. [23] Bergeron M, Cadorette J, Beaudoin J-F, et al. Evaluation of the Performance-Based Digital LabPET APD PET Scanner. IEEE Trans Nucl Sci. 2009;56(1).10.1109/TNS.2008.2010257
  24. [24] Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371-388.10.1002/ana.410060502117743
DOI: https://doi.org/10.1515/pjmpe-2016-0012 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 69 - 75
Submitted on: Apr 21, 2016
Accepted on: Aug 23, 2016
Published on: Sep 24, 2016
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Khadidja Berradja, Nabil Boughanmi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.