Have a personal or library account? Click to login
Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae Cover

Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae

Open Access
|Dec 2017

References

  1. 1. Singh, R., Smitha, M.S. & Singh, S.P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14(7), 4745–4756. DOI: 10.1166/jnn.2014.9527.10.1166/jnn.2014.9527
  2. 2. Stubbings, W. & Labischinski, H. (2009). New antibiotics for antibiotic-resistant bacteria. Biol. Rep. 17(1) 40–46. DOI: 10.3410/B1-40.10.3410/B1-40
  3. 3. Patrascu, J.M., Nedelcu, I.A., Sonmez, M., Ficai, D., Ficai, A. & Vasile, B.S. (2015). Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomat. 8 pages. DOI: http://dx.doi.org/10.1155/2015/587989.10.1155/2015/587989
  4. 4. Caamano, M.A., Carrillo-Morales, M. & Olivares-Trejo, J.J. (2016). Iron oxide nanoparticle improve the antibacterial activity of erythromycin. J. Bacteriol. Parasitol. 7(4), 267–270. DOI: 10.4172/2155-9597.1000267.10.4172/2155-9597.1000267
  5. 5. Kalishwaralal, K., Barathmanikanth, S., Pandian, S.R.K., Deepak, V. & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Coll. Surf. B: Biointerf. 79(2), 340–344. DOI: 10.1016/j.colsurfb.2010.04.014.10.1016/j.colsurfb.2010.04.014
  6. 6. Mihu, M.R., Sandkovsky, U., Han, G., Friedman, J.M., Nosanchuk, J.D. & Martinez, L.R. (2010). The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections. Virulence 1(2), 62–67. DOI: 10.4161/viru.1.2.10038.10.4161/viru.1.2.10038
  7. 7. Satar, R., Syed, I.A., Rasool, M., Pushparaj, P.N. & Ansari, S.A. (2016). Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology. Pol. J. Chem. Technol. 18(2), 9–12. DOI: https://doi.org/10.1515/pjct-2016-0022.10.1515/pjct-2016-0022
  8. 8. Fang, C.T., Lai, S.Y., Yi, W.C., Hsueh, P.R., Liu, K.L. & Chang, S.C. (2007). Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 45(3), 284–290. DOI: 10.1086/519262.10.1086/519262
  9. 9. Donlan, R.M. (2001). Biofilms and device-associated infections. Emer. Inf. Dis. 7(2), 277–281. DOI: 10.3201/eid0702.700277.10.3201/eid0702.700277
  10. 10. Jagnow, J. & Clegg, S. (2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix and collagen-coated surfaces. Microbiology 149(9), 2397–2405. DOI: 10.1099/mic.0.26434-0.10.1099/mic.0.26434-0
  11. 11. Ash, C., Farrow, J.A., Dorsch, M., Stackenbrandt, E. & Collins, M.D. (1991). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase of 16S rRNA. Int. J. Syst. Bacteriol. 41(3), 343–346. DOI: 10.1099/00207713-41-3-343.10.1099/00207713-41-3-343
  12. 12. Bottone, E.J. (2010). Bacillus Cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23(2), 382–398. DOI: 10.1128/CMR.00073-09.10.1128/CMR.00073-09
  13. 13. Wu, W., He, Q. & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nan. Res. Lett. 3(11), 397–415. DOI: 10.1007/s11671-008-9174-9.10.1007/s11671-008-9174-9
  14. 14. Mohapatra, M. & Anand, S. (2010). Synthesis and applications of nanostructured iron oxides/hydroxides-a review. Int. J. Eng. Sci. Technol. 2(8), 127–146. DOI: http://dx.doi.org/10.4314/ijest.v2i8.63846.10.4314/ijest.v2i8.63846
  15. 15. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J. & Ding, H. (2008). Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112(30), 11336–11339. DOI: 10.1021/jp801632p.10.1021/jp801632p
  16. 16. Ahmed, T., Phul, R., Khatoon, N. & Sardar, M. (2017). Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J. Chem. 41(5), 2055–2061. DOI: 10.1039/C7NJ00103G.10.1039/C7NJ00103
  17. 17. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, A. & Nazir, S. (2017). Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B 170(4), 241–246. DOI: 10.1016/j.jphotobiol.2017.04.020.10.1016/j.jphotobiol.2017.04.020
  18. 18. Mahdavi, M., Ahmad, M.B., Haron, M.J., Gharayebi, Y., Shameli, K. & Nadi, B. (2013). Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23(3), 599–607. DOI: 10.1007/s10904-013-9820-2.10.1007/s10904-013-9820-2
  19. 19. Majeed, M.I., Guo, J., Yan, W. & Tan, B. (2016). Preparation of magnetic iron oxide nanoparticles (MIONS) with improved saturation magnetization using multifunctional polymer ligand. Polymers 8(11), 392–408. DOI: 10.3390/polym8110392.10.3390/polym8110392
  20. 20. Gotic, M. & Music, S. (2007). Mossbauer FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Nanostruct. 834–836(7), 445–453. DOI: https://doi.org/10.1016/j.molstruc.2006.10.059.10.1016/j.molstruc.2006.10.059
  21. 21. Zhang, F., Wang, P., Koberstein, J., Khalid, S. & Chan, S.W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563(1–3), 74–82. DOI: https://doi.org/10.1016/j.susc.2004.05.138.10.1016/j.susc.2004.05.138
  22. 22. Bavand, R., Yelon, A. & Sacher, E. (2015). X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Appl. Surf. Sc. 355(5), 279–289. DOI: https://doi.org/10.1016/j.apsusc.2015.06.202.10.1016/j.apsusc.2015.06.202
  23. 23. Yamashita, T. & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.10.1016/j.apsusc.2007.09.063
  24. 24. Rahman, M.M., Khan, S.B., Faisal, M., Rub, M.A., Al-Youbi, M.A. & Asiri, A.M. (2012). Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Talanta 99(2), 924–931. DOI: https://doi.org/10.1016/j.talanta.2012.07.060.10.1016/j.talanta.2012.07.060
  25. 25. Kon, K. & Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and influencing factors. J. Comp. Clin. Path. Res. 2(3), 160–2174. DOI: 10.4178/jccph/e2015020.10.4178/jccph/e2015020
  26. 26. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. & Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874. DOI: 10.3390/molecules20058856.10.3390/20058856
  27. 27. Li, H., Chen, Q., Zhao, J. & Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 5(5), 11033–11040. DOI: 10.1038/srep11033.10.1038/srep11033
Language: English
Page range: 110 - 115
Published on: Dec 29, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Shakeel Ahmed Ansari, Mohammad Oves, Rukhsana Satar, Anish Khan, Syed Ismail Ahmad, Mohammad Alam Jafri, Syed Kashif Zaidi, Mohammad Husein Alqahtani, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.