Have a personal or library account? Click to login
Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions Cover

Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

Open Access
|Dec 2017

References

  1. 1. Basak, B., Bhunia, B. & Dey, A. (2014). Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol bio-degradation. Int. Biodeterior. Biodegrad. 93, 107–117. DOI: 10.1016/j.ibiod.2014.05.012.10.1016/j.ibiod.2014.05.012
  2. 2. Gupta, A. & Balomajumder, C. (2015). Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J. Water. Proc. Eng. 6, 1–10. DOI: 10.1016/j.jwpe.2015.02.004.10.1016/j.jwpe.2015.02.004
  3. 3. Isaac, W., Mwangi, J., Ngila, C., Ndung’u, P. & Msagati, T.A.M. (2014). Removal of phenolics from aqueous media using quaternised maize Tassels. J. Environ. Manag. 134, 70–79. DOI: 10.1016/j.jenvman.2013.12.03110.1016/j.jenvman.2013.12.03124463851
  4. 4. Osegueda, O., Dafinov, A., Llorca, J., Medina, F. & Sueiras, J. (2015). Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem. Eng. J. 262, 344–355. DOI: 10.1016/j.cej.2014.09.06410.1016/j.cej.2014.09.064
  5. 5. Zagklis. D.P., Vavouraki, A.I., Kornaros, M.E. & Paraskeva, C.A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard Mater. 285, 69–76. DOI: 10.1016/j.jhazmat.2014.11.038.10.1016/j.jhazmat.2014.11.03825497019
  6. 6. Turkia, A., Guillardb, C., Dappozzeb, F., Ksibia, F., Berhaultb, G. & Kochkara, H. (2015). Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal. B. 163, 404–414. DOI: 10.1016/j.apcatb.2014.08.010.10.1016/j.apcatb.2014.08.010
  7. 7. Yu, L., Chen, J., Liang, Z., Xu, W., Chen, L. & Ye, D. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst Sep. Purif. Technol. 171, 80–87. DOI: 10.1016/j.seppur.2016.07.020.10.1016/j.seppur.2016.07.020
  8. 8. Kamel, S., Abou-Yousef, H., Yousef, M. & El-Sakhawy, M. (2012). Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohydr. Polym. 88(1), 250–256. DOI: 10.1016/j.carbpol.2011.11.090.10.1016/j.carbpol.2011.11.090
  9. 9. Álvarez-Torrellas, S., Martin-Martinez, M., Gomes, H.T., Ovejero, G. & Garcia, J. (2017). Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Appl. Surf. Sci. 414, 424–434. DOI: 10.1016/j.apsusc.2017.04.054.10.1016/j.apsusc.2017.04.054
  10. 10. Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X. & Ayoko, G.A. (2016). Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: A comparative study of single and multiple solute. Colloid Surf. A. 497, 63–71. DOI: 10.1016/j.colsurfa.2016.02.032.10.1016/j.colsurfa.2016.02.032
  11. 11. Cheng, W.P., Gao, W., Cui, X., Ma, J.H. & Li, R.F. (2016). Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. E. 62, 192–198. DOI: 10.1016/j.jtice.2016.02.004.10.1016/j.jtice.2016.02.004
  12. 12. Hasan, Z. & Jhung S.H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mat. 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.10.1016/j.jhazmat.2014.09.046
  13. 13. Mangrulkar, P.A., Kamble, S.P., Meshram, J. & Rayalu, S.S. (2008). Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater. 160(2–3), 414–421. DOI: 10.1016/j.jhazmat.2008.03.01310.1016/j.jhazmat.2008.03.013
  14. 14. Al-Hamdi, A.M., Sillanpää, M., Bora, T. & Dutta J. (2016). Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles. Appl. Surf. Sci. 370, 229–236. DOI: 10.1016/j.apsusc.2016.02.123.10.1016/j.apsusc.2016.02.123
  15. 15. Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L. Vaghetti, J.C.P. & Dias, S.L.P. (2016). Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067–1080. DOI: 10.1016/j.molliq.2016.09.032.10.1016/j.molliq.2016.09.032
  16. 16. Zhang, D., Huo, P. & Liu, W. Behavior of phenol adsorption on thermal modified activated carbon. (2016). Chin. J. Chem. Eng. 24(4), 446–452. DOI: 10.1016/j.cjche.2015.11.022.10.1016/j.cjche.2015.11.022
  17. 17. Nakagawa, Y., Molina-Sabio, M. & Rodríguez-Reinoso, F. (2007). Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Micropor. Mesopor. Mater. 103(1–3), 29–34. DOI: 10.1016/j.micromeso.2007.01.029.10.1016/j.micromeso.2007.01.029
  18. 18. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing. K.W.S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1070. DOI: 10.1515/pac-2014-1117.10.1515/pac-2014-1117
  19. 19. López, M.V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marina, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8), 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.10.1016/S0008-6223(98)00317-0
  20. 20. Giraldo, L. & Moreno, J.C. (2000) Determination of the Immersion Enthalpy of activated carbon by Microcalorimetry of the Heat Conduction. Instrum. Sci. Technol. 28(2), 171–178. DOI: 10.1081/CI-100100970.10.1081/CI-100100970
  21. 21. Neimark, A.V., Lin, Y., Ravikovitch, P.I. & Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7), 1617–1628. DOI: 10.1016/j.carbon.2009.01.050.10.1016/j.carbon.2009.01.050
  22. 22. Silvestre-Albero, J., Gómez, C., Sepúlveda-Escribano, A. & Rodríguez-Reinoso, F. (2001). Characterization of microporous solids by Inmersion calorimetry. Colloid Surf. A. 187–188, 151–165. DOI: 10.1016/S0927-7757(01)00620-3.10.1016/S0927-7757(01)00620-3
  23. 23. Stoeckli, F. & Centeno, T.A. (1997). On the characterization of microporous carbons by inmersion calorimetry alone. Carbon, 35(8), 1097–1100. DOI: 10.1016/S0008-6223(97)00067-5.10.1016/S0008-6223(97)00067-5
  24. 24. Denoyel, R., Fernandez-Colinas, J., Grillet, Y. & Rouquerol, J. (1993). Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9(2), 515–518. DOI: 10.1021/la00026a025.10.1021/la00026a025
  25. 25. Navarrete, L., Giraldo, L. & Moreno, J.C. (2006). Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol. Rev Colomb Quím. 35(2), 215–224. DOI: 101007/s10973-006-7524-3.
  26. 26. Moreno-Castilla, C (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83–94. DOI: 10.1016/j.carbon.2003.09.022.10.1016/j.carbon.2003.09.022
Language: English
Page range: 87 - 93
Published on: Dec 29, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Diana P. Vargas, Liliana Giraldo, Juan Carlos Moreno-Piraján, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.