Have a personal or library account? Click to login
Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene Cover

Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene

Open Access
|Dec 2017

References

  1. 1. Królikowski, W. & Rosłaniec, Z. (2004). Polymer nanocomposites. Kompozyty 4, 3–15 (in Polish)
  2. 2. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2017). Novel hydrophilic carboxymethyl starch/montmorillonite nano-composite Films. Carbohydr. Polym. 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.10.1016/j.carbpol.2015.04.02326005142
  3. 3. Olejnik, M. (2008). Polymer nanocomposites involving montmorillonite – preparation, evaluation methods, properties and application. Tech. Wyr. Włók. 67–74. (in Polish).
  4. 4. Kacperski, M. (2003). Polymer nanocomposites, Kompozyty 3, 225–231. (in Polish).
  5. 5. Kacperski, M. (2002). Polymer nanocomposites. Polimery. 47, 801–807. (in Polish)10.14314/polimery.2002.801
  6. 6. Malesa, M. (2004). Nanofillers of polymer composites. Elastomery, 3, 12–17 (in Polish)
  7. 7. Sikora, M. (2006). Rheological modifiers essential parameter of cosmetic products. Przem. Kosmetyczny 11, 26–31. (in Polish)
  8. 8. Kunert, A. & Zaborski, M. (2010). Construction, properties and applications of layered minerals. Przem. Chem. 1, 1510–1517. (in Polish)
  9. 9. Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131, 84–99. DOI: 10.1016/j.clay.2016.05.001.10.1016/j.clay.2016.05.001
  10. 10. Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R. & Breen, C. (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl. Catal. A: General. 318, 108–120. DOI: 10.1016/j.apcata.2006.10.048.10.1016/j.apcata.2006.10.048
  11. 11. Koolia, F., Liu, Y., Alshahateet Solhe, F., Messali, M. & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43, 357–363. DOI: 10.1016/j.clay.2008.10.006.10.1016/j.clay.2008.10.006
  12. 12. Nagendrappa, G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138. DOI: 10.1016/j.clay.2010.09.016.10.1016/j.clay.2010.09.016
  13. 13. Stekrova, M., Kumara, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., Roine, J., Arzumanov, S.S., Mäki-Arvela, P. & Yu. Murzin, D. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic alde-hyde. Appl. Catal. A: General. 470, 162–176. DOI: 10.1016/j.apcata.2013.10.044.10.1016/j.apcata.2013.10.044
  14. 14. Comelli, N., Avila, M.C., Volzone, C. & Ponzi, M. (2013). Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11, 689–697. DOI: 10.2478/s11532-013-0217-4.10.2478/s11532-013-0217-4
  15. 15. Ravasio, N., Zaccheria, F., Gervasini, A. & Messi, C. (2008). A new, Fe based, heterogeneous Lewis acid: Selective isomerization of a-pinene oxide. Catal. Commun. 9, 1125–1127. DOI: 10.1016/j.catcom.2007.10.019.10.1016/j.catcom.2007.10.019
  16. 16. Kumar, V. & Agarwal, A.K. (2014). A review on catalytic terpene transformation over heterogenous catalyst, Inter. J. Curr. Res. Chem. Pharm. Sci. 1, 78–88.
  17. 17. Volcho, K. & Salakhutdinov, N.F. (2008). Transformations of Terpenoids on Acidic Clays. Mini-Rev. Org. Chem. 5, 345–354. DOI: 10.2174/157019308786242151.10.2174/157019308786242151
  18. 18. Yadav, M.Kr., Chudasama, C.D. & Jasra, R.V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A: Chemical, 216, 51–59. DOI: 10.1016/j.molcata.2004.02.004.10.1016/j.molcata.2004.02.004
  19. 19. Yarovaya, O.I., Korchagina, D.V., Salakhutdinov, N.F. & Tolstikov, G.A. (2012). Reaction of isocembreol and alcohols on clay. Chem. Nat. Comp. 48, 57–59. DOI: 0009-3130/12/4801-0056.10.1007/s10600-012-0158-8
  20. 20. Akgu, M., Ozyagcı, B. & Karabakan, A.l. (2013). Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from a-pinene. J. Ind. Enginee. Chem. 19, 240–249. DOI: 10.1016/j.jiec.2012.07.024.10.1016/j.jiec.2012.07.024
  21. 21. Ilina, I.V., Suslov, E.V., Khomenko, T.M., Korchagina, D.V., Volcho, K.P., Salakhutdinov, N.F. (2009). Natural Mont-morillonite Clay as Prebiotic Catalyst. Paleont. J. 43, 958–964. DOI: 10.1134/S0031030109080139.10.1134/S0031030109080139
  22. 22. Il’ina, I.V., Volcho, K.P., Korchagina, D.V., Barkhash, V.A. & Salakhutdinov, N.F. (2007). Transformations of (–)-Myrtenal Epoxide over Askanite–Bentonite Clay. Rus. J. Org. Chem. 43, 56–59. DOI: 10.1134/S1070428007010058.10.1134/S1070428007010058
  23. 23. Wróblewska, A., Makuch, E. & Miądlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121–129. DOI: 10.1016/j.cattod.2015.11.008.10.1016/j.cattod.2015.11.008
  24. 24. Marino, D., Gallegos, N.G., Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., Casuscelli, S.G., Herrero, E.R. & Marchetti S.G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods: Limonene epoxidation with H2O2. Catal. Today. 133–135, 632–638. DOI: 10.1016/j.cattod.2007.12.111.10.1016/j.cattod.2007.12.111
  25. 25. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19, 19907–19922. DOI: 10.3390/molecules191219907.10.3390/191219907
  26. 26. Pinto, L.D., Dupont, J., de Souza, R.F., Bernardo-Gusmão, K. (2008). Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids. Catal. Comm. 9, 135–139. DOI: 10.1016/j.catcom.2007.05.025.10.1016/j.catcom.2007.05.025
  27. 27. Bussi, J., López, A., Peña, F., Timbal, P., Paz, D., Lorenzo, D. & Dellacasa, E. (2003). Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl. Catal. A: General 253, 177–189. DOI: 10.1016/S0926-860X(03)00519-2.10.1016/S0926-860X(03)00519-2
  28. 28. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A. & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. APJTB 5, 601–611. DOI: 10.1016/j.apjtb.2015.05.007.10.1016/j.apjtb.2015.05.007
  29. 29. Chen, T.C., Fonseca, C.O.D. & Schönthal, A.H. (2015). Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Can. Res. 5, 1580–1593.
  30. 30. Li, C.D., Sablong, R.J. & Koning Cor, E. (2016). Chemoselective Alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. 128, 11744–11748. DOI: 10.1002/anie.201604674.10.1002/anie.20160467427529815
  31. 31. Morinaga, H. & Sakamoto, M. (2017). Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Lett. 58, 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.10.1016/j.tetlet.2017.05.021
  32. 32. Linnekoski, J.A., Asikainen, M., Heikkinen, H., Kaila, R. K., Räsänen, J. & Harlin A. (2014). Production of p-cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process Res. & Dev. 18, 1468–1475. DOI. 10.1021/op500160f.10.1021/op500160f
Language: English
Page range: 50 - 58
Published on: Dec 29, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Mariusz Malko, Adrian Krzysztof Antosik, Agnieszka Wróblewska, Zbigniew Czech, Katarzyna Wilpiszewska, Piotr Miądlicki, Beata Michalkiewicz, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.