Have a personal or library account? Click to login
Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions Cover

Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions

Open Access
|Oct 2017

References

  1. 1. Climent, M., Ferrerb, I., del Mar Baezac, M., Artola, A., Vázquezb, F. & Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133, 335–342. DOI: 10.1016/j.cej.2007.02.020.10.1016/j.cej.2007.02.020
  2. 2. Zhang, H. (2010). Sludge treatment to increase biogas production. Trita-LWR Degree Project 10–20, Stockholm, Sweden.
  3. 3. Foladori, P., Andreottola, G. & Ziglio, G. (2010). Sludge reduction technologies in wastewater treatment plants. IWA Publishing, London.10.2166/9781780401706
  4. 4. Bougrier, C., Carrere, H. & Delgenes, J. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169. DOI: 10.1016/j.cej.2004.11.013.10.1016/j.cej.2004.11.013
  5. 5. Zhang, P., Zhang, G. & Wang, W. (2007). Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technol. 98, 207–210. DOI: 10.1016/j.biortech.2005.12.002.10.1016/j.biortech.2005.12.002
  6. 6. Zhang, G., Yang, J., Liu, H. & Zhang, J. (2009). Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technol. 100, 1505–1509. DOI: 10.1016/j.biortech.2008.08.041.10.1016/j.biortech.2008.08.041
  7. 7. Neyens, E. & Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. B98, 51–67. DOI: 10.1016/S0304-3894(02)00320-5.10.1016/S0304-3894(02)00320-5
  8. 8. Pilli, S., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: A review. Crit. Rev. Environ. Sci. Technol. 45(6), 669–702. DOI: 10.1080/10643389.2013.876527.10.1080/10643389.2013.876527
  9. 9. Ferrer, I., Ponsá, S., Vázquez, F. & Font, X. (2008). Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192. DOI: 10.1016/j.bej.2008.06.020.10.1016/j.bej.2008.06.020
  10. 10. Appels, L., Houtmeyers, S., Degrève, J., Impe, J.V. & Dewil, R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technol. 128, 598–603. DOI: 10.1016/j.biortech.2012.11.007.10.1016/j.biortech.2012.11.00723211486
  11. 11. Tyagi, V. & Lo, S. (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 18, 288–305. DOI: 10.1016/j.rser.2012.10.032.10.1016/j.rser.2012.10.032
  12. 12. Li, H., Li, C., Liu, W. & Zou, S. (2012). Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresource Technol. 123, 189–194. DOI: 10.1016/j.biortech.2012.08.017.10.1016/j.biortech.2012.08.01722940318
  13. 13. Zhang, Y., Zhang, P. Zhang, G. Ma, W. Wu, H. & Ma, B. (2012). Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresource Technol. 123, 514–519. DOI: 10.1016/j.biortech.2012.07.078.10.1016/j.biortech.2012.07.07822940362
  14. 14. Eskicioglu, C., Kennedy, K. & Ronald, D.R. (2006). Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 40, 3725–3736. DOI: 10.1016/j.watres.2006.08.017.10.1016/j.watres.2006.08.01717028065
  15. 15. Cui, R. & Jahng, D. (2006). Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge. Biotechnol. Lett. 28, 531–538. DOI: 10.1007/s10529-006-0012-9.10.1007/s10529-006-0012-916614889
  16. 16. Carlson, M., Lagerkvist, A. & Morgan-Sagastume, F. (2012). The effect of substrate pre-treatment on anaerobic digestion system: A review. Waste Management. 32, 1634–1650. DOI: 10.1016/j.wasman.2012.04.016.10.1016/j.wasman.2012.04.01622633466
  17. 17. Martínez, E., Rosas, J., Morán, A. & Gómez, X. (2015). Effect of ultrasound pretreatment on sludge digestion and dewatering characteristics: Application of particle size analysis. Water 7(11), 6483–6495. DOI: 10.3390/w7116483.10.3390/w7116483
  18. 18. Wu, Q.L., Guo, W.Q., Zheng, H.S., Luo, H.Ch., Feng, X.Ch., Yin, R.L. & Ren, N.Q. (2016). Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresource Technol. 216, 653–660. DOI: 10.1016/j.biortech.2016.06.006.10.1016/j.biortech.2016.06.00627289056
  19. 19. Huan, L., Yiying, J., Bux Mahar, R., Zhiyu, W. & Yongfeng, N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J. Hazard. Mater. 161, 1421–1426. DOI: 10.1016/j.jhazmat.2008.04.113.10.1016/j.jhazmat.2008.04.11318547717
  20. 20. Xiao, B.Y. & Liu, J.X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54, 2038–2044. DOI: 10.1007/s11434-009-0100-z.10.1007/s11434-009-0100-z
  21. 21. Jung, Y., Ko, H., Jung, B. & Sung, N. (2011). Application of ultrasonic system for enhanced sewage sludge disintegration: A comparative study of Single- and dual-frequency. KSCE J. Civ. Eng. 15, 793–797. DOI: 10.1007/s12205-011-0832-6.10.1007/s12205-011-0832-6
  22. 22. Negral, L., Marañón, E., Castrillón, L. & Fernández-Nava, Y. (2015). Differences in soluble COD and ammonium when applying ultrasound to primary, secondary and mixed sludge. Water Sci. Technol. 71, 1398–406. DOI: 10.2166/wst.2015.113.10.2166/wst.2015.113
  23. 23. Jin, L., Zhang, G. & Zheng, X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance. J. Environ. Sci. 28, 22–28. DOI: 10.1016/j.jes.2014.06.040.10.1016/j.jes.2014.06.040
  24. 24. Penaud, V., Delgenès, J.P. & Moletta, R. (1999). Thermochemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Tech. 25, 258–263. DOI: 10.1016/S0141-0229(99)00037-X.10.1016/S0141-0229(99)00037-X
  25. 25. Sperling, M. (2007). Basic principles of wastewater treatment. IWA Publishing, Vol. 2, London.
  26. 26. Zawilski, M. & Brzezińska, A. (2009). Variability of COD and TKN fractions of combined wastewater. Pol. J. Environ. Stud. 18, 501–505.
  27. 27. Henze, M., Gujer, W., Mino, T. & van Loosdrecht, M. (2007). Activated sludge models ASM1, ASM2, ASM2d, ASM3. IWA Tasc Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, London.
  28. 28. Dulekgurgen, E., Doğruel, S., Karahan, Ö. & Orhon, D. (2006). Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 40, 273–282. DOI: 10.1016/j.watres.2005.10.032.10.1016/j.watres.2005.10.03216376405
  29. 29. Hayet, C., Saida, B.A., Touhami, Y. & Hedi, S. (2016). Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test. Sustain. Environ. Res. 26, 55–62. DOI: 10.1016/j.serj.2015.11.001.10.1016/j.serj.2015.11.001
  30. 30. Junoh, H., Yip, CH. & Kumaran, P. (2016). Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste, International Conference on Advances in Renewable Energy and Technologies (ICARET 2016), IOP Publishing, IOP Conf. Series: Earth and Environmental Science, Vol. 32. Putrajaya, Malaysia. DOI: 10.1088/1755-1315/32/1/012013.10.1088/1755-1315/32/1/012013
  31. 31. Sadecka, Z., Jędrczak, A. & Płuciennik-Koropczuk, E. (2013). COD Fractions in Sewage Flowing into Polish Sewage Treatment Plants. Chem. Biochem. Eng. Q. 27(2), 185–195.
  32. 32. Wentzel, M.C., Mbewe, A., Lakay, M.T. & Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters. Water SA. 25(3), 327–335.
  33. 33. Henze, M., Gujer, W., Mino, T. & von Loosdrecht, M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Scientific and Technical Reports, London.
  34. 34. Wintle, B. (2008). The use of activated sludge model No. 3 to model an activated sludge unit at an industrial wastewater treatment facility. Master of Science. Environmental Engineering Oklahoma State University Stillwater, Oklahoma.
  35. 35. Specialized Committees ATV-DVWK. ATV-DVWK – A131P. (2000). Dimensioning of biological activated treatment plant (in Polish). Seidel-Przywecki. Warsaw.
  36. 36. Appels, L., Degrèvea, J., Bruggen, B., Impe, J. & Dewil R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion, Bioresource Technol. 101(15), 5743–5748. DOI: 10.1016/j.biortech.2010.02.068.10.1016/j.biortech.2010.02.06820335023
  37. 37. Farno, E., Baudez, J.C., Parthasarathy, R. & Esshtiaghi, N. (2016). Impact of thermal treatment on the rheological properties and composition of waste activates sludge: COD solubilisation as a footprint of rheological changes. Chem. Eng. J. 295, 39–48. DOI: 10.1016/j.cej.2016.03.022.10.1016/j.cej.2016.03.022
  38. 38. Myszograj, S. (2013). Effects of the solubilisation of the COD of municipal waste in thermal disintegration. Arch. Environ. Protect. 39(2), 57–67. DOI: 10.2478/aep-2013-0014.10.2478/aep-2013-0014
  39. 39. Aboulfoth, A.M., El Gohary, E.H. & El Monayeri, O.D. (2015). Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 9(1), 82–88. DOI: 10.4090/juee.2015.v9n1.082088.10.4090/juee.2015.v9n1.082088
  40. 40. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R. & Van Loosdrecht, M.C. (1999). Activated sludge model No2D, ASM2D. Water Sci. Technol. 39(1), 165–182. DOI: 10.1016/S0273-1223(98)00829-4.10.1016/S0273-1223(98)00829-4
  41. 41. Kumi, P.J., Henley, A., Shana, A., Wilson, W. & Esteves, S.R. (2016). Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Res. 100, 267–276. DOI: 10.1016/j.watres.2016.05.030.10.1016/j.watres.2016.05.03027206055
  42. 42. Mikosz, J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Int. J. Environ. Sci. Technol. 12, 827–836. DOI: 10.1007/s13762-013-0472-0.10.1007/s13762-013-0472-0
  43. 43. Penn, M.R., Pauer, J.J. & Mihelcic, J.R. (2009). Biochemical oxygen demand. Environ. Ecol. Chem. 2, 278–297.
Language: English
Page range: 130 - 135
Published on: Oct 10, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Anna Ciaciuch, Jerzy Gaca, Karolina Lelewer, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.