Have a personal or library account? Click to login
Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide Cover

Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide

Open Access
|Oct 2017

References

  1. 1. Pang, F.M., Teng, S.P., Teng, T.T. & Mohd Omar, A.K. (2009). Heavy Metals Removal by Hydroxide Precipitation and Coagulation-Flocculation Methods from Aqueous Solutions. Water Qual. Res. J. Can. 44(2), 174–182.10.2166/wqrj.2009.019
  2. 2. Amuda, O., Amoo, I., Ipinmoroti, K. & Ajayi, O. (2006). Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ. Mgt. 10 (3), 159–162. http://dx.doi.org/10.4314/jasem.v10i3.1733910.4314/jasem.v10i3.17339
  3. 3. Vaaramaa, K. & Lehto, J. (2003). Removal of metals and anions from drinking water by ion exchange. Desalination 155, 157–170. DOI: 10.1016/S0011-9164(03)00293-5.10.1016/S0011-9164(03)00293-5
  4. 4. Blocher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K. & Matis, K.A. (2003). Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 37, 4018–4026. http://dx.doi.org/10.1016/S0043-1354(03)00314-210.1016/S0043-1354(03)00314-2
  5. 5. da Silva, J.R.P., Mercon, F., Costa, C.M.G. & Benjo, D.R. (2016). Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater. Desalin. Water Treat. 57(41), 19466–19474. http://dx.doi.org/10.1080/19443994.2015.110055410.1080/19443994.2015.1100554
  6. 6. Bertazzoli, R., Widner, R.C., Lanza, M.R.V., Di Iglia, R.A. & Sousa, M.F.B. (1997). Electrolytic Removal of Metals Using a Flow-Through Cell with a Reticulated Vitreous Carbon Cathode. J. Braz. Chem. Soc. 8(5), 487–493. http://dx.doi.org/10.1590/S0103-5053199700050000910.1590/S0103-50531997000500009
  7. 7. Laus, R., Costa, T.G., Szpoganicz, B. & Favere, V.T. (2010). Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J. Hazard. Mater. 183, 233–241. http://dx.doi.org/10.1016/j.jhazmat.2010.07.01610.1016/j.jhazmat.2010.07.016
  8. 8. Prabakaran, R. & Arivoli, S. (2012). Adsorption kinetics, equilibrium and thermodynamic studies of Nickel adsorption onto Thespesia Populnea bark as biosorbent from aqueous solutions. Euro. J. Appl. Eng. Sci. Res. 1(4), 134–142.
  9. 9. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. B97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.10.1016/s0304-3894(02)00237-6
  10. 10. Ravichandran, T. & Arivoli, S. (2013). Adsorption of Fe (III) Ions by Activated Calcite Powder-Equilibrium, Kinetic and Thermodynamics Studies. J. Pharm. Biomed. Res. 2(1), 52–59.
  11. 11. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.10.1016/j.jhazmat.2008.11.00319097690
  12. 12. Otun, J.A., Oke, I.A., Olarinoye, N.O., Adie, D.B. & Okuofu, C.A. (2006). Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11), 2368–2376. DOI: 10.3923/jas.2006.2368.2376.10.3923/jas.2006.2368.2376
  13. 13. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. http://dx.doi.org/10.1016/S0956-053X(02)00011-910.1016/S0956-053X(02)00011-9
  14. 14. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.10.1016/j.seppur.2005.11.016
  15. 15. Öztaş, N.A., Karabakan, A. & Topal, Ö. (2008). Removal of Fe(III) ion from aqueous solution by adsorption on raw and treated clinoptilolite samples. Micropor. Mesopor. Mat. 111, 200–205. DOI: 10.1016/j.micromeso.2007.07.030.10.1016/j.micromeso.2007.07.030
  16. 16. Hashemian, S., Hosseini, S.H., Salehifar, H. & Salari, K. (2013). Adsorption of Fe(III) from Aqueous Solution by Linde Type-A Zeolite. Am. J. Anal. Chem. 4, 123–126. http://dx.doi.org/10.4236/ajac.2013.47A01710.4236/ajac.2013.47A017
  17. 17. Bhattacharyya, K.G. & Gupta, S.S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption 12, 185–204. DOI: 10.1007/s10450-006-0145-0.10.1007/s10450-006-0145-0
  18. 18. Li, Y., Hu, X., Ren, B. & Wang, Z. (2016). Removal of High-Concentration Fe(III) by Oxidized Multiwall Carbon Nanotubes in a Fixed Bed Column. Am. Chem. Sci. J. 10(3), 1–9. DOI: 10.9734/ACSJ/2016/21692.10.9734/ACSJ/2016/21692
  19. 19. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. DOI: 10.1021/nn1006368.10.1021/nn100636820731455
  20. 20. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Sci. Bull. Tech. Univ. Lodz. Food Chem. Biotechnol. 74(1081), 5–11.
  21. 21. ISO 6332:1988. Water quality. Determination of iron. Spectrometric method using 1,10-phenanthroline.
  22. 22. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.L., Delgado, G., Cuevas-Yáńez, E., Alaníz-Lumbreras, D., Duron-Torres, S. & Castańo, V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J. Nanomater. 2013, 1–9. http://dx.doi.org/10.1155/2013/70215710.1155/2013/702157
  23. 23. Chen, J., Chen, Q., Ma, Q., Li, Y. & Zhu, Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd-Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114–120. DOI: 10.1016/j.molcata.2011.12.032.10.1016/j.molcata.2011.12.032
  24. 24. Kyzas, G.Z., Travlou, N.A., Kalogirou, O. & Deliyanni, E.A. (2013). Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption. Materials 6, 1360–1376. DOI: 10.3390/ma6041360.10.3390/6041360
  25. 25. Chen, J., Zhu, Z.H., Ma, Q., Li, L., Rudolph, V. & Lu, G.Q. (2009). Effects of pretreatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal. Today 148, 97–102. DOI: 10.1016/j.cattod.2009.02.005.10.1016/j.cattod.2009.02.005
  26. 26. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xiaa, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 91(2), 361–368. DOI: 10.1016/j.cherd.2012.07.007.10.1016/j.cherd.2012.07.007
  27. 27. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T. & Ruoff, R.S. (2007). Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034
  28. 28. Some, S., Kim, Y., Yoon, Y., Yoo, H.J., Lee, S., Park, Y. & Lee, H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3, 1–5. DOI: 10.1038/srep01929.10.1038/srep01929366831923722643
  29. 29. Couzi, M., Bruneel, J.-L., Talaga, D. & Bokobza, L. (2016). A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. Carbon 107, 388–394. http://dx.doi.org/10.1016/j.carbon.2016.06.01710.1016/j.carbon.2016.06.017
  30. 30. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A. & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41. DOI: 10.1021/nl071822y.10.1021/nl071822y18154315
  31. 31. Iqbal, M.W., Singh, A.K., Iqbal, M.Z. & Eom, J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys. Condens. Matter. 24, 335301–335307. DOI: 10.1088/0953-8984/24/33/335301.10.1088/0953-8984/24/33/33530122814217
  32. 32. Lottermoser, B.G. (2010). Mine Wastes. Characterization, Treatment and Environmental Impacts. Springer-Verlag, London, New York.10.1007/978-3-642-12419-8
  33. 33. Vasu, A.E. (2008). Adsorption of Ni(II), Cu(II) and Fe(III) from Aqueous Solutions Using Activated Carbon. E-J. Chem. 5(1), 1–9. http://dx.doi.org/10.1155/2008/69024110.1155/2008/690241
  34. 34. Benaisa, S., El Mail, R. & Jbari, N. (2016). Biosorption of Fe (III) from aqueous solution using brown algae Sargassum Vulgare. J. Mater. Environ. Sci. 7(5), 1461–1468.
  35. 35. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.10.1016/j.dyepig.2006.09.008
  36. 36. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.
  37. 37. Thamilarasu, P., Sivakumar, P. & Karunakaran, K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5), 414–420.
  38. 38. Wan Ngah, W.S., Ab Ghani, S. & Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technol. 96, 443–450. DOI: 10.1016/j.biortech.2004.05.022.10.1016/j.biortech.2004.05.022
  39. 39. Deka, L. & Bhattacharyya, K.G. (2015). Batch adsorption studies for iron(III) removal from aqueous solution by sand and charcoal mixture. J. Appl. Fund. Sci. 1(1), 74–80.
  40. 40. Taman, R., Ossman, M.E., Mansour, M.S. & Farag, H.A. (2015). Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals. J. Adv. Chem. Eng. 5(3), 1–8. http://dx.doi.org/10.4172/2090-4568.100012510.4172/2090-4568.1000125
  41. 41. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403.10.1021/ja02242a004
  42. 42. Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift fur Physikalische Chemie 57, 385–470.
  43. 43. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.10.1016/j.jhazmat.2008.08.089
  44. 44. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227. http://dx.doi.org/10.1016/S0960-8524(97)00055-210.1016/S0960-8524(97)00055-2
  45. 45. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.10.1016/j.jhazmat.2009.01.050
  46. 46. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 75–83. DOI: 10.1002/app.1986.070310108.10.1002/app.1986.070310108
  47. 47. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/1618-2863(200204).10.1002/1618-2863(200204)
  48. 48. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.10.1016/j.biortech.2007.05.070
  49. 49. Ho, Y.S., Wase, D.A.J. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332. http://dx.doi.org/10.1016/0043-1354(94)00236-Z10.1016/0043-1354(94)00236-Z
  50. 50. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.10.1016/j.cej.2007.04.007
  51. 51. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.10.1021/je900619d
  52. 52. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.10.1016/j.jhazmat.2005.03.02415878798
  53. 53. Johnson, C.D. & Worrall, F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 4, 2229–2235. http://dx.doi.org/10.1016/j.watres.2007.01.04710.1016/j.watres.2007.01.04717360021
  54. 54. Kinhikar, V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6), 6–11.
  55. 55. Yueming Ren, N.Y. (2011). Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7. http://dx.doi.org/10.1016/j.cej.2010.08.01010.1016/j.cej.2010.08.010
  56. 56. Jha, V.K., Matsuda, M. & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 160, 148–153. http://dx.doi.org/10.1016/j.jhazmat.2008.02.10710.1016/j.jhazmat.2008.02.10718417279
  57. 57. Zhang, X. & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10(2), 1–21. http://dx.doi.org/10.1371/journal.pone.011707710.1371/journal.pone.0117077431560125647398
  58. 58. Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H. & Tavares, T. (2009). Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149, 319–324. DOI: 10.1016/j.cej.2008.11.025.10.1016/j.cej.2008.11.025
  59. 59. Karthikeyan, G. & Siva Ilango, S. (2008). Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous medium using activated Carbon prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 12(2), 81–87. http://dx.doi.org/10.4314/jasem.v12i2.5553710.4314/jasem.v12i2.55537
  60. 60. Ahalya, N., Kanamadi, R.D. & Ramachandra, T.V. (2007). Cr (VI) and Fe (III) removal using Cajanus cajan husk. J. Environ. Biol. 28(4), 765–769.
  61. 61. Dai, J., Ren, F.L. & Tao, C.Y. (2012). Adsorption Behavior of Fe(II) and Fe(III) Ions on Thiourea Cross-Linked Chitosan with Fe(III) as Template. Molecules 17, 4388–4399. DOI: 10.3390/molecules17044388.10.3390/17044388
  62. 62. Sankar, K.R., Venkatraman, B.R. & Arivoli, S. (2013). Equilibrium and Thermodynamics Studies on the Removal of Iron (III) onto Plaster of Paris. Int. J. Eng. Innov. Res. 2(1), 28–33.
  63. 63. Moradi, O., Zare, K. & Yari, M. (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int. J. Nano. Dim. 1(3), 203–220.
  64. 64. Salam, M.A., Makki, M.S.I. & Abdelaal, M.Y.A. (2011). Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J. Alloys Compd. 509, 2582–2587. DOI: 10.1016/j.jallcom.2010.11.094.10.1016/j.jallcom.2010.11.094
  65. 65. Unlu, N. & Ersoz, M. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Sep. Purif. Technol. 52, 461–469. DOI: 10.1016/j.seppur.2006.05.026.10.1016/j.seppur.2006.05.026
  66. 66. Abdus-Salam, N. & Bello, M.O. (2015). Kinetics, thermodynamics and competitive adsorption of lead and zinc ions onto termite mound. Int. J. Environ. Sci. Technol. 12, 3417–3426. DOI: 10.1007/s13762-015-0769-2.10.1007/s13762-015-0769-2
  67. 67. Salam, M.A. (2013). Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 10, 677–688. DOI: 10.1007/s13762-012-0127-6.10.1007/s13762-012-0127-6
  68. 68. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232. http://dx.doi.org/10.1016/S0043-1354(02)00265-810.1016/S0043-1354(02)00265-8
  69. 69. Jaycock, M.J. & Parfitt, G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd., Onichester.
Language: English
Page range: 120 - 129
Published on: Oct 10, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Wojciech Konicki, Małgorzata Aleksandrzak, Ewa Mijowska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.