Have a personal or library account? Click to login
Adsorption of Cr(VI) by Natural Clinoptilolite Zeolite from Aqueous Solutions: Isotherms and Kinetics Cover

Adsorption of Cr(VI) by Natural Clinoptilolite Zeolite from Aqueous Solutions: Isotherms and Kinetics

Open Access
|Oct 2017

References

  1. 1. Gueye, M.Y.R., Kafack, F.T. & Blin, J. (2014). High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2(1), 273–281. DOI : 10.1016/j.jece.2013.12.014.10.1016/j.jece.2013.12.014
  2. 2. Sreenivas, K.M., Gokhale, M.B.I. & Lele, S.S. (2014). Reutilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. J. Environ. Chem. Eng. 2(1), 455–462. DOI: 10.1016/j.jece.2014.01.017.10.1016/j.jece.2014.01.017
  3. 3. Nosuhi, M. & Nezamzadeh-Ejhieh, A. (2017). High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). J. Electro. Acta, 223, 47–62. DOI: 10.1016/j.electacta.2016.12.011.10.1016/j.electacta.2016.12.011
  4. 4. Darvishi Cheshmeh Soltani, R.J., Safari, S. & Rajaei, M.M.S. (2016). Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach. J. Environ. Manage 179, 47–57. DOI: 10.1016/j.jenvman.2016.05.001.10.1016/j.jenvman.2016.05.00127173890
  5. 5. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. J. Bioresour. Technol. 98(12), 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.10.1016/j.biortech.2005.12.00616427277
  6. 6. Jorfi, S., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J. Environ. Manage. 187, 111–121. DOI: 10.1016/j.jenvman.2016.11.042.10.1016/j.jenvman.2016.11.04227888712
  7. 7. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. J. Ultra. Sono. Chem. 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.10.1016/j.ultsonch.2015.07.00226384885
  8. 8. Ahmadi, M., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: 10.1016/j.jenvman.2016.09.088.10.1016/j.jenvman.2016.09.08827852522
  9. 9. Rajic, N., Jovanovic, S.M., Logar, N.Z., Mazaj, M. & Kaucic, V. (2010). Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. J. Appl. Surf. Sci. 257(5), 1524–1532. DOI: 10.1016/j.apsusc.2010.08.090.10.1016/j.apsusc.2010.08.090
  10. 10. Bagheri Ghomi, A. & Ashayeri, V. (2012). Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions. Iranian J. Cataly. 2(3), 135–140.
  11. 11. Jha, V.K. & Hayashi, S.H. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. J. Hazard. Mater. 169(1–3), 29–35. DOI: 10.1016/j.jhazmat.2009.03.052.10.1016/j.jhazmat.2009.03.05219395165
  12. 12. Gedik, K. & Imamoglu, I. (2008). Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J. Hazard. Mater. 155(1–2), 385–392. DOI: 10.1016/j.jhazmat.2007.12.101.10.1016/j.jhazmat.2007.12.10118262351
  13. 13. Kocaoba, S., Orhan, Y. & Akyüz, T. (2007). Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. J. Desali. 214(1–3), 1–10. DOI: 10.1016/j.desal.2006.09.023.10.1016/j.desal.2006.09.023
  14. 14. Vassileva, P. & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J. Hazard. Mater. 170 (2–3), 948–953. DOI: 10.1016/j.jhazmat.2009.05.062.10.1016/j.jhazmat.2009.05.06219524358
  15. 15. Danesh-Khorasgani, M. & Nezamzadeh-Ejhieh, A. (2016). PVC-zeolite nanoparticle-surfactant anion exchanger membrane: preparation, characterization, and its application in development of ion-selective electrode for detection of sulfate. J. Solid State. Electro. Chem. 20(10), 2827–2833. DOI: 10.1007/s10008-016-3265-9.10.1007/s10008-016-3265-9
  16. 16. Hashemi, S. & Nezamzadeh-Ejhieh, A. (2014). A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles. J. Desali & Water Treat. 57, 3304–3314. DOI: 10.1080/19443994.2014.989916.10.1080/19443994.2014.989916
  17. 17. Sharafzadeh, S. & Nezamzadeh-Ejhieh, A. (2015). Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. J. Electrochim. Acta 184, 371–380. DOI: 10.1016/j.electacta.2015.09.164.10.1016/j.electacta.2015.09.164
  18. 18. Deravanesiyan, M. & Malekpour, M.B.A. (2015). The removal of Cr (III) and Co (II) ions from aqueous solution by two mechanisms using a new sorbent (alumina nanoparticles immobilized zeolite) — Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 209, 246–257. DOI: 10.1016/j.molliq.2015.05.038.10.1016/j.molliq.2015.05.038
  19. 19. Ouadjenia-Marouf, R., Schott, J. & Yahiaoui, A. (2013). Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. J. Arab. Chem. 6(4), 401–406. DOI: 10.1016/j.arabjc.2010.10.018.10.1016/j.arabjc.2010.10.018
  20. 20. Ajoudanian, N. & Nezamzadeh-Ejhieh, A. (2015). Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. J. Mater. Sci. Semi Proce. 36, 162–169. DOI: 10.1016/j.mssp.2015.03.042.10.1016/j.mssp.2015.03.042
  21. 21. Dianati Tilaki, R.A., Kahe, D. & Zazouli, M.A. (2013). Efficiency of Zeolite Clinoptilolite in Removal of Ammoniumion from Polluted Waters. J. Maz. Univ. Med. Sci. 22(97), 250–256. http://jmums.mazums.ac.ir/article-1-1815-en.html.
  22. 22. APHA, 2005. Standard Methods for the Examination of Water & Wastewater. Washington DC.
  23. 23. Jiménez-cedillo, M.J., Olguín, M.T. & Fall, Ch. (2009). Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron – manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 163(2–3), 939–945. DOI: 10.1016/j.jhazmat.2008.07.049.10.1016/j.jhazmat.2008.07.04918723281
  24. 24. Derikvandi, H. & Nezamzadeh-Ejhieh, A. (2017). A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Molecu. Catal. A: Chem. 426, 158–169. DOI: 10.1016/j.molcata.2016.11.011.10.1016/j.molcata.2016.11.011
  25. 25. Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H. & Silipas, D. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. J. Environ. Manage 137, 69–80. DOI: 10.1016/j.jenvman.2014.02.007.10.1016/j.jenvman.2014.02.00724603029
  26. 26. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R. & Bonilla-Petriciolet, A. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage 116, 213–221. DOI: 10.1016/j.jenvman.2012.12.010.10.1016/j.jenvman.2012.12.01023321372
  27. 27. Wang, S. & A riyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Coll. Interf. Sci. 314(1), 25–31. DOI: 10.1016/j.jcis.2007.05.032.10.1016/j.jcis.2007.05.03217543322
  28. 28. Moussavi, G., Talebi, S., Farrokhi, M. & Sabouti, R.M. (2011). The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. J. Chem. Eng. 171(3), 1159–1169. DOI: 10.1016/j.cej.2011.05.016.10.1016/j.cej.2011.05.016
  29. 29. Inglezakis, V.J., Stylianou, M., Gkantzou, D. & Loizidou, M.D. (2007). Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. J. Desali. 210(1–3), 248–256. DOI: 10.1016/j.desal.2006.05.049.10.1016/j.desal.2006.05.049
  30. 30. Dal Bosco, S.M., Jimenez, R.S. & Carvalho, W.A. (2005). Removal of toxic metals from wastewater by Brazilian natural scolecite. J. Coll. Interf. Sci. 281(2) 424–431. DOI: 10.1016/j.jcis.2004.08.060.10.1016/j.jcis.2004.08.06015571698
  31. 31. Nezamzadeh-Ejhieh, A. & Raja, G. (2013). Modification of Nanoclinoptilolite Zeolite with Hexadecyltrimethylammonium Surfactant as an Active Ingredient of Chromate-Selective Membrane Electrode. J. Chemis. 1–13. DOI: 10.1155/2013/685290.10.1155/2013/685290
  32. 32. Hegazi, H.A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. J. HBRC 9(3), 276–282. DOI: 10.1016/j.hbrcj.2013.08.004.10.1016/j.hbrcj.2013.08.004
  33. 33. Sarı, A. & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160(2–3), 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.10.1016/j.jhazmat.2008.03.00518406520
  34. 34. Darvishi-Cheshme Soltani, R., Shams-Khorramabadi, G., Khataee, A.R. & Jorfi, S. (2013). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 45(3), 973–980. DOI: 10.1016/j.jtice.2013.09.014.10.1016/j.jtice.2013.09.014
  35. 35. Esfehani, A. & Shamohammadi-Heidari, Z. (2011). Manganese Removal from Aqueous Solution by Natural and Sodium Modified Zeolite. J. Environ. Stud. 37, 28–30.
  36. 36. Borandegi, M. & Nezamzadeh-Ejhieh, A. (2015). Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid. J. Coll. &Surf. A: Physicochem & Engin Aspects. 479, 35–45. DOI: 10.1016/j.colsurfa.2015.03.040.10.1016/j.colsurfa.2015.03.040
  37. 37. Sprynskyy, M., Buszewski, B., Terzyk, A.P. & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Coll. Inter. Sci. 304(1), 21–28. DOI: 10.1016/j.jcis.2006.07.068.10.1016/j.jcis.2006.07.06816989853
  38. 38. Malamis, S. & Katsou, F. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 252–253, 428–461. DOI: 10.1016/j.jhazmat.2013.03.024. 310.1016/j.jhazmat.2013.03.024.3
  39. 9. Behnamfard, A. & Salarirad, M.M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 170(1), 127–133. DOI: 10.1016/j.jhazmat.2009.04.124.10.1016/j.jhazmat.2009.04.12419481345
  40. 40. Anari-Anaraki, M. & Nezamzadeh-Ejhieh, A. (2015). Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J. Coll. Interf. Sci. 440, 272–281. DOI: 10.1016/j.jcis.2014.11.017.10.1016/j.jcis.2014.11.01725460715
  41. 41. Naghash, A. & Nezamzadeh-Ejhieh, A. (2015). Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. J. Industri & Eng. Chem. 31, 185–191. DOI: 10.1016/j.jiec.2015.06.022.10.1016/j.jiec.2015.06.022
  42. 42. Dizge, N., Keskinler, B. & Barlas, H. (2009). Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. J. Hazard. Mater. 167(1–3), 915–926. DOI: 10.1016/j.jhazmat.2009.01.073.10.1016/j.jhazmat.2009.01.07319231079
  43. 43. Najafi, M., Yousefi, Y. & Rafati, A.A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. J. Sep. Purif. Technol. 85, 193–205. DOI: 10.1016/j.seppur.2011.10.011.10.1016/j.seppur.2011.10.011
  44. 44. Heidari-Chaleshtori, M. & Nezamzadeh-Ejhieh, A. (2015). Clinoptilolite nano-particles modified with aspartic acid for removal of Cu(II) from aqueous solutions: isotherms and kinetic aspects. J. New. Chem. 39, 9396–9406. DOI: 10.1039/C5NJ01631B.10.1039/C5NJ01631
  45. 45. Guo, H., Zhang, S., Kou, Z., Zhai, S., Ma, W. & Yang, Y. (2015). Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. J. Carbohydr. Polym. 115, 177–85. DOI: 10.1016/j.carbpol.2014.08.041.10.1016/j.carbpol.2014.08.04125439883
  46. 46. Ozay, O., Ekici, S., Baran, Y., Aktas, N. & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. J. Water Res. 43. 4403–4411. DOI: 10.1016/j.watres.2009.06.058.10.1016/j.watres.2009.06.05819625066
  47. 47. Rezaee, A., Godini, H. & Jorfi, S. (2010). Nitrate removal from aqueous solution using mgcl2 impregnated activated carbon. J. Environ. Eng. & Manag. 9(3), 449–452.10.30638/eemj.2010.062
Language: English
Page range: 106 - 114
Published on: Oct 10, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Sahand Jorfi, Mohammad Javad Ahmadi, Sudabeh Pourfadakari, Nematollah Jaafarzadeh, Reza Darvishi Cheshmeh Soltani, Hamideh Akbari, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.