Have a personal or library account? Click to login
Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution Cover

Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

By: Ahad Ghaemi  
Open Access
|Oct 2017

References

  1. 1. Bougie, F. & Iliuta, M.C. (2011). CO2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling, J. Chem. Eng. 56, 1547–1554. DOI: 10.1021/je1012247.10.1021/je1012247
  2. 2. Kohl, A.L. & Nielsen, R.B., Gas Purification, 5th ed., Gulf Publishing Co., Houston, U.S.A., 1997.
  3. 3. Charkravarty, T. & Phuken, U.K. (1985). Reaction of acid gases with mixtures of amines. Chem. Eng. Prog. 40, 32–36.
  4. 4. Pashaei, P., Nasiri, M. & Ghaemi, A. (2017). Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column. Chem. Eng. Res. Design 121, 32–43. DOI: 10.1016/j.cherd.2017.03.001.10.1016/j.cherd.2017.03.001
  5. 5. Norouzbahari, S., Shahhosseini, Sh. & Ghaemi, A. (2015). Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. J. Nat. Gas Sci. Eng. 24, 18–25. DOI: 10.1016/j.jngse.2015.03.011.10.1016/j.jngse.2015.03.011
  6. 6. Ghaemi, A., Shahhosseini, Sh. & Maragheh, MG. (2009). Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chem. Eng. J. 149 (1), 110–117. DOI: 10.1016/j.cej.2008.10.020.10.1016/j.cej.2008.10.020
  7. 7. Nwaoha, C., Saiwan, C., Tontiwachwuthikul, P. & Supap, T., Rongwong W., Idem R., AL-Marri M.J. & Benamor, A. (2016). Carbon dioxide capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J. Nat. Gas Sci. Eng. 33, 742–750. DOI: 10.1016/j.jngse.2016.06.002.10.1016/j.jngse.2016.06.002
  8. 8. Pal, P., Abu Kashabeh, A., Al-Asheh, S. & Banat, F. (2015). Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway. J. Nat. Gas Sci. Eng. 24, 124–131. DOI: 10.1016/j.jngse.2015.03.007.10.1016/j.jngse.2015.03.007
  9. 9. Qiu, K., Shang, J.F., Ozturk, M., Li, T.F., Chen, S.K., Zhang, L.Y. & Gu, X.H. (2014). Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening. J. Nat. Gas Sci. Eng. 21, 379–385. DOI: 10.1016/j.jngse.2014.08.023.10.1016/j.jngse.2014.08.023
  10. 10. Øi, L.E. (2010). CO2 removal by absorption: challenges in modeling, Math Compu. Model. Dynamic Sys. 16, 511–33. DOI: 10.1080/13873954.2010.491676.10.1080/13873954.2010.491676
  11. 11. Boettinger, W., Maiwald, M. & Hasse, H. (2008). Online NMR spectroscopic study of species 626 distribution in MEA-CO2-H2O and DEA-H2O-CO2, Fluid Phase Equilibria. 263, 131–43. DOI: 10.1016/j.fluid.2007.09.017.10.1016/j.fluid.2007.09.017
  12. 12. Pashaei, P., Ghaemi, A. & Nasiri, M. (2016). Modeling and experimental study on the solubility and mass transfer of CO2 into aqueous DEA solution using a stirrer bubble column. RSC Adv. 6, 108075–108092. DOI: 10.1039/C6RA22589F.10.1039/C6RA22589F
  13. 13. Notz, R., Mangalapally, H.P. & Hasse, H. (2012). Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int. J. Greenh. Gas Contr. 6, 84–112. DOI: 10.1016/j.ijggc.2011.11.004.10.1016/j.ijggc.2011.11.004
  14. 14. Lee, I.Y., Kwak, N.S., Lee, J.H., Jang, K.R. & Shim, J.G. (2013). Oxidative Degradation of Alkanolamines with Inhibitors in CO2 Capture Process. Energy Proced. 37, 1830–1835. DOI:10.1016/j.egypro.2013.06.061.10.1016/j.egypro.2013.06.061
  15. 15. Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 380, 93–99. DOI: 10.1016/j.desal.2015.08.004.10.1016/j.desal.2015.08.004
  16. 16. Freguia, S. & Rochelle, G.T. (2003). Modeling of CO2 Capture by Aqueous Monoethanolamine. AIChE J. 49, 1676–1686. DOI: 10.1002/aic.690490708.10.1002/aic.690490708
  17. 17. Lv, B., Guo, B., Zhou, Z. & Jing, G. (2015). Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 49, 10728–10735. DOI: 10.1021/acs.est.5b02356.10.1021/acs.est.5b0235626236921
  18. 18. Xie, H.B., Zhou, Y.Z., Zhang, Y.K. & Johnson, J.K. (2010). Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J. Phys. Chem. A. 114, 11844–11852. DOI: 10.1021/jp107516k.10.1021/jp107516k20939618
  19. 19. Wong, K., Bustam, M.A. & Shariff, A.M. (2016). In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy. J. Nat. Gas Sci. Eng. 36, 305–313. DOI: 10.1016/j.jngse.2016.10.029.10.1016/j.jngse.2016.10.029
  20. 20. Han, B., Zhou, C.G., Wu, J.P., Tempel, D.J. & Cheng, H.S. (2011). Understanding CO2 capture mechanisms in aqueous monoethanolamine via first principles simulations. J. Physics Chem. Lett. 2, 522–526. DOI: 10.1021/jz200037s.10.1021/jz200037s
  21. 21. Etemad, E., Ghaemi, A. & Shirvani, M. (2015). Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. Int. J. Greenh. Gas Cont. 42, 288–295. DOI: 10.1016/j.ijggc.2015.08.011.10.1016/j.ijggc.2015.08.011
  22. 22. Moioli, S. & Pellegrini, L.A. & Gamba, S. (2012). Simulation of CO2 capture by MEA scrubbing with a ratebased model. Procedia Eng. 42, 1800–1810. DOI: 10.1016/j.proeng.2012.07.558.10.1016/j.proeng.2012.07.558
  23. 23. Rumpf, B. & Maurer, G. (1993). An Experimental and Theoretical Investigation on the Solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes. Ber. Bunsengesells. Physik. Chem. 97, 85–97. DOI: 10.1002/bbpc.19930970116.10.1002/bbpc.19930970116
  24. 24. Kent, R.L. & Eisenberg, B. (1976). Better Data for Amine Treating, 87–90.
  25. 25. Ghaemi, A., Torab-Mostaedi, M., Ghannadi Maragheh, M. & Shahhosseini, Sh. (2011). Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions, Chem. Eng. Commun. 198, 1169–1181. DOI: 10.1080/00986445.2010.525204.10.1080/00986445.2010.525204
  26. 26. Saul, A. & Wagner, W. (1987). International Equations for the Saturation Properties of Ordinary Water Substance. J. Phys. Chem. 16, 893–901. DOI: 10.1063/1.555787.10.1063/1.555787
  27. 27. Dymond, J.H. & Smith, E.B. The Virial Coefficients of Pure Gases and Mixtures, Oxford University Press: Oxford, UK, 1980.
  28. 28. Hayden, J.G. & O’Connell, J.P. (1975). A Generalized Method for Predicting Second Virial Coefficients. Ind. Engi. Chem. Proc. Design Develop. 14, 209–216. DOI: 10.1021/i260055a003.10.1021/i260055a003
  29. 29. Brelvi, S.W., O’Connell, J.P. (1972). Corresponding States Correlations for Liquid Compressibility and Partial Molal Volumes of Gases at Infinite Dilution in Liquids. AIChE J. 18, 1239–1243. DOI: 10.1002/aic.690180622.10.1002/aic.690180622
  30. 30. Sander, B., Fredenslund, A. & Rasmussen, P. (1986) Calculation of Vapor-Liquid Equilibrium in Mixed Solvent/Salt Systems using an Extended UNIQUAC Equation, Chem. Eng. Sci. 41, 1171–1183. DOI: 10.1016/0009-2509(86)87090-7.10.1016/0009-2509(86)87090-7
  31. 31. Thomsen, K. (2005). Modeling electrolyte solutions with the extended universal quasi chemical (UNIQUAC) model. Pure Appl. Chem. 77, 531–542. DOI: 10.1351/pac200577030531.10.1351/pac200577030531
  32. 32. Aronu, U.E., Gondal, Sh., Hessen, E.T., Haug-Warberg, T., Hartono, A., Hoff, K.A. & Svendsen, H.F., (2011). Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. Chem. Eng. Sci. 66, 6393–6406. DOI: 10.1016/j.ces.2011.08.042.10.1016/j.ces.2011.08.042
  33. 33. Dugass, R.E. (2009). Carbon Dioxide Absorption, Desorption, and Diffusion in Aqueous Piperazine and Monoethanolamine, PhD Dissertation, University of Texas at Austin.
  34. 34. Lagarias, J.C., Reeds, J.A., Wright, M.H. & Wright, P.E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147. DOI: 10.1137/S1052623496303470.10.1137/S1052623496303470
Language: English
Page range: 75 - 82
Published on: Oct 10, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Ahad Ghaemi, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.