Have a personal or library account? Click to login
Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids Cover

Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

Open Access
|Oct 2017

References

  1. 1. Clemente, J.S. & Fedorak, P.M. (2005). A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585–600. DOI: 10.1016/j.chemosphere.2005.02.065.10.1016/j.chemosphere.2005.02.06515963797
  2. 2. Headley, J.V., Peru, K.M. & Barrow, M.P. (2016). Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectr. Rev. 35(2), 311–328. DOI: 10.1002/mas.21472.10.1002/mas.2147225970647
  3. 3. Mandal, P.C. & Nagarajan, T. (2016) Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol. Pol. J. Chem. Technol. 18(3) 44–49. DOI: 10.1515/pjct-2016-0047.10.1515/pjct-2016-0047
  4. 4. Shi, L.J., Shen, B.X. & Wang, G.Q. (2008). Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22(6), 4177–4181. DOI: 10.1021/ef800497p.10.1021/ef800497p
  5. 5. Lirong, D. (2005). Formation mechanism and model of oil and gas accumulations in the Melut Basin, Sudan. Bulletin of Mineralogy Petrol. Geochem. 24(1), 50–57.
  6. 6. Shukri, N.M., Bakar, W.A.W.A., Jaafar, J. & Majid, Z.A. (2015). Removal of naphthenic acids from high acidity Korean crude oil utilizing catalytic deacidification method. J. Ind. Eng. Chem. 28, 110–116. DOI: 10.1016/j.jiec.2015.02.005.10.1016/j.jiec.2015.02.005
  7. 7. Wang, Y.Z., Li, J.Y., Sun, X.Y., Duan, H.L., Song, C.M., Zhang, M.M. & Liu, Y.P. (2014). Removal of naphthenic acids from crude oils by fixed-bed catalytic esterification. Fuel 116, 723–728. DOI: 10.1016/j.fuel.2013.08.047.10.1016/j.fuel.2013.08.047
  8. 8. Nasir Shah, S., Mutalib, M.I.A., Pilus, R.B.M. & Lethesh, K.C. (2014). Extraction of Naphthenic Acid from Highly Acidic Oil Using Hydroxide-Based Ionic Liquids. Energy Fuels 29(1), 106–111. DOI: 10.1021/ef502169q.10.1021/ef502169q
  9. 9. Shah, S.N., Chellappan, L.K., Gonfa, G., Mutalib, M.I.A., Pilus, R.B.M. & Bustam, M.A. (2016). Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids. Chem. Eng. J. 284, 487–493. DOI: 10.1016/j.cej.2015.09.017.10.1016/j.cej.2015.09.017
  10. 10. Shohaimi, N.A.M., Bakar, W.A.W.A. & Jaafar, J. (2014). Catalytic neutralization of acidic crude oil utilizing ammonia in ethylene glycol basic solution. J. Ind. Eng. Chem. 20(4), 2086–2094. DOI: 10.1016/j.jiec.2013.09.037.10.1016/j.jiec.2013.09.037
  11. 11. Wang, Y.Z., Sun, X.Y., Liu, Y.P. & Liu, C.G. (2007). Removal of naphthenic acids from a diesel fuel by esterification. Energy Fuels 21(2), 941–943. DOI: 10.1021/ef060501r.10.1021/ef060501r
  12. 12. Zifeng, L., Songbai, T. & Zijun, W. (2009). Study on esterification for reducing total acid number of high acid crude oil by Mg/Al oxides [J]. Pet. Process. Petrochem. 8, 024.
  13. 13. Wang, Y.Z., Duan, H.I., Song, C.M., Han, X.T. & Ma, X.R. (2014). Removal of naphthenic acids from crude oils by catalytic decomposition using Mg–Al hydrotalcite/γ-Al2O3 as a catalyst. Fuel 134, 499–504. DOI: 10.1016/j.fuel.2014.06.026.10.1016/j.fuel.2014.06.026
  14. 14. Wang, H., Duan, W., Lei, Y., Wu, Y., Guo, K. & Wang, X. (2015). An intracrystalline catalytic esterification reaction between ethylene glycol intercalated layered double hydroxide and cyclohexanecarboxylic acid. Catal Cammun. 62, 44–47. DOI: 10.1016/j.catcom.2015.01.004.10.1016/j.catcom.2015.01.004
  15. 15. Lee, Y.H., Park, J.Y., Park, S.Y., Kim, C.H., Nam, J., Kim, Y.J. & Bae, J.W. (2016). Removal of benzoic acid in heavy oils by esterification using modified Ferrierite: Roles of Bronsted and Lewis acid sites. Energy Fuels, 30(7), 5391–5397. DOI: 10.1021/acs.energyfuels.6b00448.10.1021/acs.energyfuels.6b00448
  16. 16. Dastjerdi, Z. (2010). The Esterification of Naphthenic Acids for Methyl Ester Production. Environ. Prog. Sustain. Energ. 32(2), 406–410. DOI: 10.1002/ep.11606.10.1002/ep.11606
  17. 17. Quiroga-Becerra, H., Mejía-Miranda, C., Laverde-Cataño, D., Hernández-López, M. & Gómez-Sánchez, M. (2012). A kinetic study of esterification of naphthenic acids from a Colombian heavy crude oil. CT&F-Ciencia, Tecnología y Futuro 4(5), 21–31. Retrieved on December 30, 2016, from http://www.scielo.org.co/scielo.php?pid=S0122-53832012000100002&script=sci_arttext10.29047/01225383.219
  18. 18. Li, X., Zhu, J., Liu, Q. & Wu, B. (2013). The removal of naphthenic acids from dewaxed VGO via esterification catalyzed by Mg–Al hydrotalcite. Fuel Process. Technol. 111, 68–77. DOI: 10.1016/j.fuproc.2013.01.016.10.1016/j.fuproc.2013.01.016
  19. 19. Mandal, P.C., Sasaki, M. & Goto, M. (2013). Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol. Fuel Process. Technol. 106, 641–644. DOI: 10.1016/j.fuproc.2012.09.058.10.1016/j.fuproc.2012.09.058
  20. 20. Khan, M.K., Insyani, R., Lee, J., Yi, M., Lee, J.W. & Kim, J. (2016). A non-catalytic, supercritical methanol route for effective deacidification of naphthenic acids. Fuel 182, 650–659. DOI: 10.1016/j.fuel.2016.06.023.10.1016/j.fuel.2016.06.023
  21. 21. Sitthithanaboon, W., Reddy, H.K., Muppaneni, T., Ponnusamy, S., Punsuvon, V., Holguim, F., Dungan, B. & Deng, S. (2015). Single-step conversion of wet Nannochloropsis gaditana to biodiesel under subcritical methanol conditions. Fuel 147, 253–259. DOI: 10.1016/j.fuel.2015.01.051.10.1016/j.fuel.2015.01.051
  22. 22. Wan, L., Liu, H. & Skala, D. (2014). Biodiesel production from soybean oil in subcritical methanol using MnCO3/ZnO as catalyst. Appl. Catal. B. 152, 352–359. DOI: 10.1016/j.apcatb.2014.01.033.10.1016/j.apcatb.2014.01.033
  23. 23. Caldas, B.S., Nunes, C.S., Souza, P.R., Rosa, F.A., Visentainer, J.V., Oscar de Olivera, S. & Muniz, E.C. (2016). Supercritical ethanolysis for biodiesel production from edible oil waste using ionic liquid [HMIM][HSO4] as catalyst. Appl. Catal. B. 181, 289–297. DOI: 10.1016/j.apcatb.2015.07.047.10.1016/j.apcatb.2015.07.047
  24. 24. Ullah, Z., Bustam, M.A. & Man, Z. (2015). Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energ. 77, 521–526. DOI: 10.1016/j.renene.2014.12.040.10.1016/j.renene.2014.12.040
  25. 25. Andreani, L. & Rocha, J. (2012). Use of ionic liquids in biodiesel production: a review. Braz. J. Chem. Eng. 29(1), 1–13. DOI: 10.1590/S0104-66322012000100001.10.1590/S0104-66322012000100001
  26. 26. Seddon, K.R. (1997). Ionic liquids for clean technology. J. Chem. Tech. Biotech. 68(4), 351–356. DOI: 10.1002/(SICI)1097-4660(199704)68:4<;351::AID-JCTB613>3.0.CO;2-410.1002/(SICI)1097-4660(199704)68:4<;351::AID-JCTB613>3.0.CO;2-4
  27. 27. Olkiewicz, M., Plechkova, N.V., Earle, M.J., Fabregat, A., Stüber, F., Fortuny, A., Font, J. & Bengoa, C. (2016). Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids. Appl. Catal. B 181, 738–746. DOI: 10.1016/j.apcatb.2015.08.039.10.1016/j.apcatb.2015.08.039
  28. 28. Kumar, M., Sharma, K. & Arya, A.K. (2012). Use of SO3H-functionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetra. Lett. 53(34), 4604–4608. DOI: 10.1016/j.tetlet.2012.06.085.10.1016/j.tetlet.2012.06.085
  29. 29. Ullah, Z., Bustam, M.A., Muhammad, N., Man, Z. & Khan, A.S. (2015). Synthesis and thermophysical properties of hydrogensulfate based acidic ionic liquids. J. Sol. Chem. 44(3-4), 875–889. DOI: 10.1007/s10953-015-0329-x.10.1007/s10953-015-0329-x
  30. 30. Aghabarari, B., Ghiaci, M., Amini, S.G., Rahimi, E. & Martinez-Huerta, M. (2014). Esterification of fatty acids by new ionic liquids as acid catalysts. J. Taiwan Inst. Chem. Eng. 45(2), 431–435. DOI: 10.1016/j.jtice.2013.08.003.10.1016/j.jtice.2013.08.003
  31. 31. Mahajan, S. & Konar, S.K. (2006). Determining the acid number of biodiesel. J. Am. Oil Chem. Soc. 83(6), 567–570. DOI: 10.1016/j.fuel.2016.06.023.10.1016/j.fuel.2016.06.023
  32. 32. Li, Y., Hu, S., Cheng, J. & Lou, W. (2014). Acidic ionic liquid-catalyzed esterification of oleic acid for biodiesel synthesis. Chin. J. Catal. 35(3), 396–406. DOI: 10.1016/S1872-2067(14)60005-X.10.1016/S1872-2067(14)60005-X
  33. 33. Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z. & Yoo, C. (2016). Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arab. J. Chem. 9(4), 578–587. DOI: 10.1016/j.arabjc.2013.09.034.10.1016/j.arabjc.2013.09.034
  34. 34. Chuah, L.F., Bokhari, A., Yusup, S., Klemeš, J.J., Abdullah, B. & Akbar, M.M. (2015). Optimisation and kinetic studies of acid esterification of high free fatty acid rubber seed oil. Arab. J. Sci. Eng. 1–12. DOI: 10.1007/s13369-015-2014-1.10.1007/s13369-015-2014-1
Language: English
Page range: 68 - 74
Published on: Oct 10, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Faisal Zafar, Pradip Chandra Mandal, Ku Zilati Bt Ku Shaari, Zahoor Ullah, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.