Have a personal or library account? Click to login
Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene Cover

Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene

By: Wei Mao,  Shouhai Li,  Mei Li,  Kun Huang and  Jianling Xia  
Open Access
|Oct 2017

References

  1. 1. Raquez, J.M., Deleglise, M., Lacrampe, M.F. & Krawczak, P. (2010). Thermosetting (bio) materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35, 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.10.1016/j.progpolymsci.2010.01.001
  2. 2. Yousefi, A., Lafleur, P.G. & Gauvinm R. (1997). Kinetic studies of thermoset cure reactions: a review. Polym. Comp.18, 157–168. DOI: 10.1002/pc.10270.10.1002/pc.10270
  3. 3. Sultania, M., Yadaw, S.B., Rai, J.S.P. & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Mater. Sci. Eng. A. 527, 4560–4570. DOI: 10.1016/j.msea.2010.04.038.10.1016/j.msea.2010.04.038
  4. 4. Boyard, N., Vayer, M., Sinturel, C., Erre, R. & Levitz, P. (2005). Study of the porous network developed during curing of thermoset blends containing low molar weight saturated polyester. Polymer. 46, 661–669. DOI: 10.1016/j.polymer.2004.11.094.10.1016/j.polymer.2004.11.094
  5. 5. Li, S., Yang, X., Huang, K., Li, M. & Xia, J. (2014). Design, preparation and properties of novel renewable UV-curable copolymers based on cardanol and dimer fatty acids. Prog. Org. Coat. 77, 388–394. DOI: 10.1016/j.porgcoat.2013.11.011.10.1016/j.porgcoat.2013.11.011
  6. 6. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.10.1016/j.indcrop.2014.10.024
  7. 7. Benmokrane, B., Ali, A.H., Mohamed, H.M., EISafty, A. & Manalo, A. (2017). Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part. B. Eng. DOI: 10.1016/j.compositesb.2017.02.002.10.1016/j.compositesb.2017.02.002
  8. 8. Afshar, A. Liao, H.T., Chiang, F.P. & Korach, C.S. (2016). Time-dependent changes in mechanical properties of carbon fiber vinyl ester composites exposed to marine environments. Compos. Struct. 144, 80–85. DOI: 10.1016/j.compstruct.2016.02.053.10.1016/j.compstruct.2016.02.053
  9. 9. Can, E., Kinaci, E. & Palmese, G.R. (2015). Preparation and characterization of novel vinyl ester formulations derived from cardanol. Eur. Polym. J. 72, 129–147. DOI: 10.1016/j.eurpolymj.2015.09.010.10.1016/j.eurpolymj.2015.09.010
  10. 10. Sultania, M., Rai, J.S.P. & Srivastava, D. (2009). Synthesis and curing of cardanol-based vinyl ester resins for applications in surface coatings-I. Paint. India. 9, 89–108.
  11. 11. Ummartyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renew. Sust. Energ. Rev. 62, 654–664. DOI: 10.1016/j.rser.2016.04.066.10.1016/j.rser.2016.04.066
  12. 12. Kummerer, K. (2007). Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green. Chem. 9, 899–907. DOI: 10.1039/B618298B.10.1039/B618298
  13. 13. Chiari, L. & Zecca, A. (2011). Constraints of fossil fules depletion on global warming projections. Energy. Policy. 39, 5026–5034. DOI: 10.1016/j.enpol.2011.06.011.10.1016/j.enpol.2011.06.011
  14. 14. Do, H., Park, J.H. & Kim, H.J. (2008). UV-curing behavior and adhesion performance of polumeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. 44, 3871–3882. DOI: 10.1016/j.eurpolymj.2008.07.046.10.1016/j.eurpolymj.2008.07.046
  15. 15. Gobin, M., Loulergue, P., Audic, J.L. & Lemiegre, L. (2015). Synthesis and characterization of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crop. Prod. 70, 213–220. DOI: 10.1016/j.indcrop.2015.03.041.10.1016/j.indcrop.2015.03.041
  16. 16. Konwar, U., Karak, N. & Mandal, M. (2010). Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog. Org. Coat. 68, 265–273. DOI: 10.1016/j.porgcoat.2010.04.001.10.1016/j.porgcoat.2010.04.001
  17. 17. Ebata, H., Yasuda, M., Toshima, K. & Matsumura, S. (2008). Poly (ricinoleic acid) based novel thermosetting elastomer. J. Oleo. Sci. 57, 315–320. DOI: 10.5650/jos.57.315.10.5650/jos.57.31518469493
  18. 18. Park, S.J. Jin, F.L. & Lee, J.R. (2004). Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol. Chem. Phys. 205, 2048–2054. DOI: 10.1002/macp.200400214.10.1002/macp.200400214
  19. 19. Behr, A., Krema, S. & Kamper, A. (2012). Ethenolysis of ricinoleic acid methyl ester-an efficient way to the olechemical key substance methyl dec-9-enoate. RSC. Adv. 2, 12775–12781. DOI: 10.1039/C2RA22499B.10.1039/222499
  20. 20. Chandorkar, Y., Mards, G. & Basu, B. (2013). Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. J. Mater. Chem. B. 1, 865–875. DOI: 10.1039/C2TB00304J.10.1039/C2TB00304J
  21. 21. Krasko, M.Y., Shikanow, A., Ezra, A. & Domb, A.J. (2003). Poly (ester anhydride) s prepared by the insertion of ricinoleic acid into poly(sebacic acid). J. Polym. Sci. Part. A: Polym. Chem. 41, 1059–1069. DOI: 10.1002/pola.10651.10.1002/pola.10651
  22. 22. Salimon, J. & Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian. J. Chem. 22, 5468–5476.
  23. 23. Lesage, P., Candy, J.P. & Hirigoyen, C. (1996). Selectve dehydrogenation of dipentene(R-(+)-limonene) into paracymene on silica supported palladium assisted by α-olefins as hydrogen acceptor. J. Mol. Cata. A: Chem. 112, 431–435. DOI: 10.1016/1381-1169(96)00220-8.10.1016/1381-1169(96)00220-8
  24. 24. Zhang, Q., Bi, L., Zhao, Z., Chen, Y., Li, D., Gu, Y., Wang, J., Chen, Y., Bo, C. & Liu, X. (2010). Application of ultrasonic spraying in preparation of p-cymene by industrial dipentene dehydrogention. Chem. Eng. J. 159, 190–194. DOI: 10.1016/j.cej.2010.02.052.10.1016/j.cej.2010.02.052
  25. 25. Zhang, L., Zhang, M., Hu, L. & Zhou, Y. (2014). Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 52, 380–388. DOI: 10.1016/j.indcrop.2013.10.043.10.1016/j.indcrop.2013.10.043
  26. 26 Qian, L., Ye, L., Xu, G., Liu, J. & Guo, J. (2011). The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96, 1118–1124. DOI: 10.1016/j.polymdegradstab.2011.03.001.10.1016/j.polymdegradstab.2011.03.001
  27. 27. Zhang, L., Zhang, M., Zhou, Y. & Hu, L. (2013). The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stab. 98, 2784–2794. DOI: 10.1016/j.polymdegradstab.2013.10.015.10.1016/j.polymdegradstab.2013.10.015
  28. 28. Gao, L., Wang, D., Wang, Y., Wang, J. & Yang, B. (2008). A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 93, 1308–1315. DOI: 10.1016/j.polymdegradstab.2008.04.004.10.1016/j.polymdegradstab.2008.04.004
  29. 29. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta & Dubois, J.M. (2009). New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. A. 63, 100–125. DOI: 10.1016/j.mser.2008.09.002.10.1016/j.mser.2008.09.002
  30. 30. Mao, W., Li, S., Li, M., Yang, X., Song, J., Wang, M., Xia, J. & Huang, K. (2016). A Novel Flame Retardant UV-Curable Vinyl Ester Resin Monomer based on Industrial Dipentene: Preparation, Characterization and Properties. J. Appl. Polym. Sci. 133. DOI: 10.1002/app.44084.10.1002/app.44084
  31. 31. Asif, A., Shi, W., Shen, X. & Nie, K. (2005). Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched alipatic polyester of varying generation number. Polymer 46, 11066–11078. DOI: 10.1016/j.polymer.2005.09.046.10.1016/j.polymer.2005.09.046
Language: English
Page range: 1 - 8
Published on: Oct 10, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Wei Mao, Shouhai Li, Mei Li, Kun Huang, Jianling Xia, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.