4. Niaura, G., Mazeikiene, R. & Malinauskas, A. (2004). Structural changes in conducting form of polyaniline upon ring sulfonation as deduced by near infrared resonance Raman spectroscopy. Synth. Met. 145(2–3), 105–112. DOI: 10.1016/j.synthmet.2004.04.010.10.1016/j.synthmet.2004.04.010
5. Anilkumar, P. & Jayakannan, M. (2007). Single-Molecular-System-Based Selective Micellar Templates for Polyaniline Nanomaterials: Control of Shape, Size, Solid State Ordering, and Expanded Chain to Coillike Conformation. Macromolecules 40(20), 7311–7319. DOI: 10.1021/ma071292s.10.1021/ma071292s
7. Gribkova, O.L., Omelchenko, O.D., Nekrasov, A.A., Ivanov, V.F. & Vannikov, A.V. (2015). On the nature of influence of polyelectrolyte molecular weight on aniline electropolymerization. J. Solid State Electrochem. 19(9), 2643–2652. DOI: 10.1007/s10008-015-2853-4.10.1007/s10008-015-2853-4
10. Han, J., Sohn, J., Cho, S., Jo, Y., Kim, J., Woo, H., Kim, H., Inamdar, A.I., Kim, H. & Im, H. (2015). Synthesis of self-assembling carbon nanotube-polyaniline nanocomposite on a flexible graphene-coated substrate for electrochemical electrode applications. J. Korean Phys. Soc. 67(3), 512–517. DOI: 10.3938/jkps.67.512.10.3938/jkps.67.512
11. Heydari, M.H., Zebhi, H., Farhadi, K. & Moghadam, P.N. (2016). Electrochemical synthesis of nanostructure poly(3-aminobenzoic acid), polyaniline and their bilayers on 430SS and their corrosion protection performances. Synth. Met. 220, 78–85. DOI: 10.1016/j.synthmet.2016.04.019.10.1016/j.synthmet.2016.04.019
12. Parsa, A. & Ab Ghani, S. (2008). Electrocopolymerization of aniline and ortho-phenylenediamine via facile negative shift of polyaniline redox peaks. Polymer 49(17), 3702–3708. DOI: 10.1016/j.polymer.2008.06.044.10.1016/j.polymer.2008.06.044
13. Parsa, A. & Ab Ghani, S. (2009). Aqueous electrosyntheses of homo and copolymers of pyrrole and aniline in a binary electrolyte system. J. Electrochem. Soc. 156(6), E105-E111. DOI: 10.1149/1.3117345.10.1149/1.3117345
15. Parsa, A. & Amanzadeh-Salout, S. (2016). Electrocatalytic activity and electrochemical impedance spectroscopy of poly(aniline-co-ortho-phenylenediamine) modified electrode on ascorbic acid. Orient. J. Chem. 32(4), 2051–2058. DOI: 10.13005/ojc/320432.10.13005/ojc/320432
17. Liu, L., Cui, H., An, H., Zhai, J. & Pan, Y. (2017). Electrochemical detection of aqueous nitrite based on poly-(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 1–7. DOI: 10.1007/s11581-017-1972-6.10.1007/s11581-017-1972-6
18. Zhang, L. & Dong, S. (2004). The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J. Electroanal. Chem. 568, 189–194. DOI: 10.1016/j.jelechem.2004.01.022.10.1016/j.jelechem.2004.01.022
19. Zuo, X., Zhang, H. & Li, N. (2012). An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode. Sens. Actuat. B: Chemical 161(1), 1074–1079. DOI: 10.1016/j.snb.2011.12.013.10.1016/j.snb.2011.12.013
20. Dilgin, Y. & Nişli, G. (2005). Fluorimetric determination of ascorbic acid in vitamin C tablets using methylene blue. Chem. Pharm. Bull. 53(10), 1251–1254. DOI: 10.1248/cpb.53.1251.10.1248/cpb.53.1251
21. Bagheri, H., Pajooheshpour, N., Jamali, B., Amidi, S., Hajian, A. & Khoshsafar, H. (2017). A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4[sbnd] SnO2[sbnd]Gr ternary nanocomposite. Microchem. J. 131, 120–129. DOI: 10.1016/j.microc.2016.12.006.10.1016/j.microc.2016.12.006
22. Solhjoo, A. & Khajehsharifi, H. (2016). Multivariate calibration applied to the simultaneous spectrophotometric determination of ascorbic acid, tyrosine and epinephrine in pharmaceutical formulation and biological fluids. Curr. Anal. Chem. 12(6), 580–593. DOI: 10.2174/1573411012999160401124820.10.2174/1573411012999160401124820
24. Ensafi, A.A., Taei, M., Khayamian, T. & Arabzadeh, A. (2010). Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo III) modified glassy carbon electrode. Sens. Actuat. B: Chemical 147(1), 213–221. DOI: 10.1016/j.snb.2010.02.048.10.1016/j.snb.2010.02.048
25. Uzun, D., Balaban Gündüzalp, A. & Hasdemir, E. (2015). Selective determination of dopamine in the presence of uric acid and ascorbic acid by N,N′-bis(indole-3-carboxaldimine)-1,2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry. J. Electroanal. Chem. 747, 68–76. DOI: 10.1016/j.jelechem.2015.03.036.10.1016/j.jelechem.2015.03.036
27. Zhang, L., Shi, Z., Lang, Q. & Pan, J. (2010). Electrochemical synthesis of belt-like polyaniline network on p-phenylenediamine functionalized glassy carbon electrode and its use for the direct electrochemistry of horse heart cytochrome c. Electrochim. Acta 55(3), 641–647. DOI: 10.1016/j.electacta.2009.09.017.10.1016/j.electacta.2009.09.017
31. Furukawa, Y. (1996). Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers. J. Phys. Chem. 100(39), 15644–15653. DOI: 10.1021/jp960608n.10.1021/jp960608n
33. Liu, M., Ye, M., Yang, Q., Zhang, Y., Xie, Q. & Yao, S. (2006). A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty. Electrochim. Acta 52(1), 342–352. DOI: 10.1016/j.electacta.2006.05.013.10.1016/j.electacta.2006.05.013
34. Brédas, J.L., Street, G.B., Thémans, B. & André, J.M. (1985). Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): Evolution of the electronic properties as a function of the torsion angle between adjacent rings. J. Chem. Phys. 83(3), 1323–1329. DOI: 10.1063/1.449450.10.1063/1.449450
35. Kosseoglou, D., Kokkinofta, R. & Sazou, D. (2011). FTIR spectroscopic characterization of Nafion®-polyaniline composite films employed for the corrosion control of stainless steel. J. Sol. State Electrochem. 15(11–12), 2619–2631. DOI: 10.1007/s10008-010-1241-3.10.1007/s10008-010-1241-3
36. Liu, M., Krasteva, M. & Barth, A. (2005). Interactions of phosphate groups of ATP and aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: An FTIR study. Biophys. J. 89(6), 4352–4363. DOI: 10.1529/biophysj.105.061689.10.1529/biophysj.105.061689
37. Mondal, S.K., Prasad, K.R. & Munichandraiah, N. (2005). Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth. Met. 148(3), 275–286. DOI: 10.1016/j.synthmet.2004.10.010.10.1016/j.synthmet.2004.10.010
38. Magdić Košiček, K., Kvastek, K. & Horvat-Radošević, V. (2016). Hydrogen evolution on Pt and polyaniline modified Pt electrodes—a comparative electrochemical impedance spectroscopy study. J. Sol. State Electrochem. 20(11), 300–3013. DOI: 10.1007/s10008-016-3246-z.10.1007/s10008-016-3246-z