Have a personal or library account? Click to login

Simulation study of an auto-thermal double-membrane reactor for the simultaneous production of hydrogen and methanol: comparison of two different hydrogen redistribution strategies along the reactor

Open Access
|Jul 2017

References

  1. 1. Goltsov, V.A., Veziroglu, T.N. & Goltsova, L.F. (2006). Hydrogen civilization of the future – A new conception of the IAHE. Int. J. Hydrogen Ener. 31(2), 153–159. DOI: 10.1016/j.ijhydene.2005.04.045.10.1016/j.ijhydene.2005.04.045
  2. 2. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425. DOI: 10.1016/j.rser.2005.01.009.10.1016/j.rser.2005.01.009
  3. 3. Ni, M., Leung, M.K.H., Sumathy, K. & Leung, D.Y.C. (2006). Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrogen Energy 31(10), 1401–1412. DOI: 10.1016/j.ijhydene.2005.11.005.10.1016/j.ijhydene.2005.11.005
  4. 4. Ni, M., Leung, D.Y.C., Leung, M.K.H. & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process. Technol. 87(5), 461–472. DOI: 10.1016/j.fuproc.2005.11.003.10.1016/j.fuproc.2005.11.003
  5. 5. Ye, G., Xie, D., Qiao, W., Grace, J.R. & Lim, C.J. (2009). Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus. Int. J. Hydrogen Energy 34(11), 4755–4762. DOI: 10.1016/j.ijhydene.2009.03.047.10.1016/j.ijhydene.2009.03.047
  6. 6. Biniwale, R.B., Kariya, N. & Ichikawa, M. (2005). Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 105(1–2), 83–87. DOI: 10.1007/s10562-005-8009-x10.1007/s10562-005-8009-x
  7. 7. Pande, J.V., Shukla, A. & Biniwale, R.B. (2012). Catalytic dehydrogenation of cyclohexane over Ag-M/ACC catalysts for hydrogen supply. Int. J. Hydrogen Energy 37(8), 6756–6763. DOI: 10.1016/j.ijhydene.2012.01.069.10.1016/j.ijhydene.2012.01.069
  8. 8. Koutsonikolas, D., Kaldis, S., Zaspalis, V.T. & Sakellaropoulos, G.P. (2012). Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation. Int. J. Hydrogen Energy 37(21), 16302–16307. DOI: 10.1016/j.ijhydene.2012.02.076.10.1016/j.ijhydene.2012.02.076
  9. 9. Chinchen, G.C., Denny, P.J., Jennings, J.R., Spencer, M.S. & Waugh, K.C. (1988). Synthesis of methanol: Part 1. catalysts and kinetics. Appl. Catal. 36, 1–65. DOI: 10.1016/S0166-9834(00)80103-7.10.1016/S0166-9834(00)80103-7
  10. 10. Wang, F., Liu, Y., Gan, Y., Ding, W., Fang, W. & Yang, Y. (2013). Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process. Technol. 110, 190–196. DOI: 10.1016/j.fuproc.2012.12.012.10.1016/j.fuproc.2012.12.012
  11. 11. Lee, D.H. & Kim, T. (2013). Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int. J. Hydro. Energy 38(14), 6039–6043. DOI: 10.1016/j.ijhydene.2012.12.132.10.1016/j.ijhydene.2012.12.132
  12. 12. Khzouz, M., Wood, J., Pollet, B. & Bujalski, W. (2013). Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni-Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int. J. Hydro. Energy 38(3), 1664–1675. DOI: 10.1016/j.ijhydene.2012.07.026.10.1016/j.ijhydene.2012.07.026
  13. 13. Khademi, M.H., Setoodeh, P., Rahimpour, M.R. & Jahanmiri, A. (2009). Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. Int. J. Hydro. Energy 34(16), 6930–6944. DOI: 10.1016/j.ijhydene.2009.06.018.10.1016/j.ijhydene.2009.06.018
  14. 14. Khademi, M.H., Jahanmiri, A. & Rahimpour, M.R. (2009). A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydro. Energy 34(12), 5091–5107. DOI: 10.1016/j.ijhydene.2009.04.007.10.1016/j.ijhydene.2009.04.007
  15. 15. Khademi, M.H., Rahimpour, M.R. & Jahanmiri, A. (2010). Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydro. Energy 35(5), 1936–1950. DOI: 10.1016/j.ijhydene.2009.12.080.10.1016/j.ijhydene.2009.12.080
  16. 16. Rahmani, F., Haghighi, M., Estifaee, P. & Rahimpour, M.R. (2012). A comparative study of two different membranes applied for auto-thermal methanol synthesis process. J. Nat. Gas Sci. Engine. 7, 60–74. DOI: 10.1016/j.jngse.2012.04.001.10.1016/j.jngse.2012.04.001
  17. 17. Rahimpour, M.R., Bayat, M. & Rahmani, F. (2010). Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor. Chem. Engine. J. 157(2–3), 520–529. DOI: 10.1016/j.cej.2009.12.048.10.1016/j.cej.2009.12.048
  18. 18. Rahimpour, M.R., Rahmani, F., Bayat, M. & Pourazadi, E. (2011). Enhancement of simultaneous hydrogen production and methanol synthesis in thermally coupled double-membrane reactor. Int. J. Hydro. Energy, 36(1), 284–298. DOI: 10.1016/j.ijhydene.2010.09.074.10.1016/j.ijhydene.2010.09.074
  19. 19. Gallucci, F., Comite, A., Capannelli, G. & Basile, A. (2006). Steam reforming of methane in a membrane reactor: an industrial case study. Industrial & Engine. Chem. Res. 45(9), 2994–3000. DOI: 10.1021/ie058063j.10.1021/ie058063j
  20. 20. Gallucci, F., Basile, A., Tosti, S., Iulianelli, A. & Drioli, E. (2007). Methanol and ethanol steam reforming in membrane reactors: An experimental study. Int. J. Hydro. Energy 32(9), 1201–1210. DOI: 10.1016/j.ijhydene.2006.11.019.10.1016/j.ijhydene.2006.11.019
  21. 21. Gallucci, F. & Basile, A. (2006). Co-current and counter-current modes for methanol steam reforming membrane reactor. Int. J. Hydro. Energy 31(15), 2243–2249. DOI: 10.1016/j.ijhydene.2006.05.007.10.1016/j.ijhydene.2006.05.007
  22. 22. Gallucci, F., Paturzo, L. & Basile, A. (2004). Hydrogen recovery from methanol steam reforming in a dense membrane reactor: simulation study. Industrial & Engine. Chem. Rese. 43(10), 2420–2432. DOI: 10.1021/ie0304863.10.1021/ie0304863
  23. 23. Chen, Z., Yan, Y. & Elnashaie, S.S.E.H. (2003). Nonmonotonic behavior of hydrogen production from higher hydrocarbon steam reforming in a circulating fast fluidized bed membrane reformer. Industrial & Engine. Chem. Res. 42(25), 6549–6558. DOI: 10.1021/ie021013j.10.1021/ie021013j
  24. 24. Basile, A., Paturzo, L. & Gallucci, F. (2003). Co-current and counter-current modes for water gas shift membrane reactor. Catal. Today 82(1–4), 275–281. DOI: 10.1016/s0920-5861(03)00241-410.1016/S0920-5861(03)00241-4
  25. 25. Rahimpour, M.R., Moghtaderi, B., Jahanmiri, A. & Rezaie, N. (2005). Operability of an industrial methanol synthesis reactor with mixtures of fresh and partially deactivated catalyst. Chem. Engine. & Technol. 28(2), 226–234. DOI: 10.1002/ceat.200407062.10.1002/ceat.200407062
  26. 26. Rezaie, N., Jahanmiri, A., Moghtaderi, B. & Rahimpour, M.R. (2005). A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem. Engine. Proces. 44(8), 911–921. DOI: 10.1016/j.cep.2004.10.004.10.1016/j.cep.2004.10.004
  27. 27. Graaf, G.H., Scholtens, H., Stamhuis, E.J. & Beenackers, A.A.C.M. (1990). Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Engine. Sci. 45(4), 773–783. DOI: 10.1016/0009-2509(90)85001-t.10.1016/0009-2509(90)85001-T
  28. 28. Graaf, G.H., Sijtsema, P.J.J.M., Stamhuis, E.J. & Joosten, G.E.H. (1986). Chemical equilibria in methanol synthesis. Chem. Engine. Sci. 41(11), 2883–2890. DOI: 10.1016/0009-2509(86)80019-7.10.1016/0009-2509(86)80019-7
  29. 29. Itoh, N. (1987). A membrane reactor using palladium. AIChE J. 33(9), 1576–1578. DOI: 10.1002/aic.690330921.10.1002/aic.690330921
  30. 30. Jeong, B.H., Sotowa, K.I. & Kusakabe, K. (2003). Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor. J. Mem. Sci. 224(1–2), 151–158. DOI: 10.1016/j.memsci.2003.08.004.10.1016/j.memsci.2003.08.004
  31. 31. Rahimpour, M.R. & Ghader, S. (2003). Theoretical investigation of a Pd-membrane reactor for methanol synthesis. Chem. Engine. & Technol. 26(8), 902–907. DOI: 10.1002/ceat.200301717.10.1002/ceat.200301717
  32. 32. Reid, R.C. & Sherwood, T.K. (1969). The properties of gases and liquids (Second Edition ed.). New York: McGraw-Hill.
  33. 33. Lindsay, A.L. & Bromley, L.A. (1950). Thermal conductivity of gas mixture. Industrial & Engine. Chem. Res. 42(8), 1508–1511. DOI: 10.1021/ie50488a017.10.1021/ie50488a017
  34. 34. Cussler, E.L. (2009). Diffusion: mass transfer in fluid systems (3rd ed.): Cambridge University Press.10.1017/CBO9780511805134
  35. 35. Rahimpour, M.R. & Pourazadi, E. (2011). A comparison of hydrogen and methanol production in a thermally coupled membrane reactor for co-current and counter-current flows. Int. J. Energy Res. 35(10), 863–882. DOI: 10.1002/er.1744.10.1002/er.1744
Language: English
Page range: 115 - 124
Published on: Jul 8, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Farhad Rahmani, Mohammad Haghighi, Pooya Estifaee, Mohammad Reza Rahimpour, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.