Have a personal or library account? Click to login
Simulation study of an auto-thermal double-membrane reactor for the simultaneous production of hydrogen and methanol: comparison of two different hydrogen redistribution strategies along the reactor
2. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425. DOI: 10.1016/j.rser.2005.01.009.10.1016/j.rser.2005.01.009
3. Ni, M., Leung, M.K.H., Sumathy, K. & Leung, D.Y.C. (2006). Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrogen Energy 31(10), 1401–1412. DOI: 10.1016/j.ijhydene.2005.11.005.10.1016/j.ijhydene.2005.11.005
5. Ye, G., Xie, D., Qiao, W., Grace, J.R. & Lim, C.J. (2009). Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus. Int. J. Hydrogen Energy 34(11), 4755–4762. DOI: 10.1016/j.ijhydene.2009.03.047.10.1016/j.ijhydene.2009.03.047
6. Biniwale, R.B., Kariya, N. & Ichikawa, M. (2005). Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 105(1–2), 83–87. DOI: 10.1007/s10562-005-8009-x10.1007/s10562-005-8009-x
7. Pande, J.V., Shukla, A. & Biniwale, R.B. (2012). Catalytic dehydrogenation of cyclohexane over Ag-M/ACC catalysts for hydrogen supply. Int. J. Hydrogen Energy 37(8), 6756–6763. DOI: 10.1016/j.ijhydene.2012.01.069.10.1016/j.ijhydene.2012.01.069
8. Koutsonikolas, D., Kaldis, S., Zaspalis, V.T. & Sakellaropoulos, G.P. (2012). Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation. Int. J. Hydrogen Energy 37(21), 16302–16307. DOI: 10.1016/j.ijhydene.2012.02.076.10.1016/j.ijhydene.2012.02.076
10. Wang, F., Liu, Y., Gan, Y., Ding, W., Fang, W. & Yang, Y. (2013). Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process. Technol. 110, 190–196. DOI: 10.1016/j.fuproc.2012.12.012.10.1016/j.fuproc.2012.12.012
12. Khzouz, M., Wood, J., Pollet, B. & Bujalski, W. (2013). Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni-Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int. J. Hydro. Energy 38(3), 1664–1675. DOI: 10.1016/j.ijhydene.2012.07.026.10.1016/j.ijhydene.2012.07.026
13. Khademi, M.H., Setoodeh, P., Rahimpour, M.R. & Jahanmiri, A. (2009). Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. Int. J. Hydro. Energy 34(16), 6930–6944. DOI: 10.1016/j.ijhydene.2009.06.018.10.1016/j.ijhydene.2009.06.018
14. Khademi, M.H., Jahanmiri, A. & Rahimpour, M.R. (2009). A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydro. Energy 34(12), 5091–5107. DOI: 10.1016/j.ijhydene.2009.04.007.10.1016/j.ijhydene.2009.04.007
15. Khademi, M.H., Rahimpour, M.R. & Jahanmiri, A. (2010). Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydro. Energy 35(5), 1936–1950. DOI: 10.1016/j.ijhydene.2009.12.080.10.1016/j.ijhydene.2009.12.080
16. Rahmani, F., Haghighi, M., Estifaee, P. & Rahimpour, M.R. (2012). A comparative study of two different membranes applied for auto-thermal methanol synthesis process. J. Nat. Gas Sci. Engine. 7, 60–74. DOI: 10.1016/j.jngse.2012.04.001.10.1016/j.jngse.2012.04.001
17. Rahimpour, M.R., Bayat, M. & Rahmani, F. (2010). Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor. Chem. Engine. J. 157(2–3), 520–529. DOI: 10.1016/j.cej.2009.12.048.10.1016/j.cej.2009.12.048
18. Rahimpour, M.R., Rahmani, F., Bayat, M. & Pourazadi, E. (2011). Enhancement of simultaneous hydrogen production and methanol synthesis in thermally coupled double-membrane reactor. Int. J. Hydro. Energy, 36(1), 284–298. DOI: 10.1016/j.ijhydene.2010.09.074.10.1016/j.ijhydene.2010.09.074
19. Gallucci, F., Comite, A., Capannelli, G. & Basile, A. (2006). Steam reforming of methane in a membrane reactor: an industrial case study. Industrial & Engine. Chem. Res. 45(9), 2994–3000. DOI: 10.1021/ie058063j.10.1021/ie058063j
20. Gallucci, F., Basile, A., Tosti, S., Iulianelli, A. & Drioli, E. (2007). Methanol and ethanol steam reforming in membrane reactors: An experimental study. Int. J. Hydro. Energy 32(9), 1201–1210. DOI: 10.1016/j.ijhydene.2006.11.019.10.1016/j.ijhydene.2006.11.019
23. Chen, Z., Yan, Y. & Elnashaie, S.S.E.H. (2003). Nonmonotonic behavior of hydrogen production from higher hydrocarbon steam reforming in a circulating fast fluidized bed membrane reformer. Industrial & Engine. Chem. Res. 42(25), 6549–6558. DOI: 10.1021/ie021013j.10.1021/ie021013j
25. Rahimpour, M.R., Moghtaderi, B., Jahanmiri, A. & Rezaie, N. (2005). Operability of an industrial methanol synthesis reactor with mixtures of fresh and partially deactivated catalyst. Chem. Engine. & Technol. 28(2), 226–234. DOI: 10.1002/ceat.200407062.10.1002/ceat.200407062
26. Rezaie, N., Jahanmiri, A., Moghtaderi, B. & Rahimpour, M.R. (2005). A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem. Engine. Proces. 44(8), 911–921. DOI: 10.1016/j.cep.2004.10.004.10.1016/j.cep.2004.10.004
35. Rahimpour, M.R. & Pourazadi, E. (2011). A comparison of hydrogen and methanol production in a thermally coupled membrane reactor for co-current and counter-current flows. Int. J. Energy Res. 35(10), 863–882. DOI: 10.1002/er.1744.10.1002/er.1744