Have a personal or library account? Click to login

Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

Open Access
|Jul 2017

References

  1. 1. Kucińska-Lipka, J., Gubanska, I. & Janik, H. (2015). Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospective. Polym. Bull. 72(9), 2399–2419. DOI: 10.1007/s00289-015-1407-3.10.1007/s00289-015-1407-3
  2. 2. Ross, P., Mayer, R. & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55(1), 35–58.10.1128/mr.55.1.35-58.19913728002030672
  3. 3. Koizumi, S., Tomita, Y., Kondo, T. & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose - interplay among physics, chemistry and biology. Macromol. Symp. 279(1), 110–118. DOI: 10.1002/masy.200950517.10.1002/masy.200950517
  4. 4. Lei, L., Li, S. & Gu, Y. (2012). Cellulose synthase complexes: composition and regulation. Front. Plant Sci. 3, 75. DOI: 10.3389/fpls.2012.00075.10.3389/fpls.2012.00075335562922639663
  5. 5. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. & Benziman M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281. DOI: 10.1038/325279a0.10.1038/325279a018990795
  6. 6. Yoshinaga, F., Tonouchi, N. & Watanabe, K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61(2), 219–224. DOI: 10.1271/bbb.61.219.10.1271/bbb.61.219
  7. 7. Li, Y., Tian, C., Tian, H., Zhang, J., He, X., Ping, W. & Lei, H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl. Microbiol. Biotechnol. 96(6), 1479–1487. DOI: 10.1007/s00253-012-4242-6.10.1007/s00253-012-4242-622782249
  8. 8. Ragunathan, S. & Levy, H.R. (1994). Purification and characterization of the NAD-preferring glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum). Arch. Biochem. Biophys. 310(2), 360–366. DOI: 10.1006/abbi.1994.1179.10.1006/abbi.1994.11798179320
  9. 9. Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Chen, X.F., Lin, X.Q. & Chen, X.D. (2014). Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 54(3), 268–273. DOI: 10.1007/s12088-014-0450-3.10.1007/s12088-014-0450-3403972524891733
  10. 10. Czaja, W., Romanovicz, D. & Brown, R.M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3), 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.10.1023/B:CELL.0000046412.11983.61
  11. 11. Hornung, M., Ludwig, M. & Schmauder, H.P. (2007). Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life. Sci. 7(1), 35–41. DOI: 10.1002/elsc.200620164.10.1002/elsc.200620164
  12. 12. Lin, D., Lopez-Sanchez, P., Li, R. & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores. Technol. 151, 113–119. DOI: 10.1016/j.biortech.2013.10.052.10.1016/j.biortech.2013.10.05224212131
  13. 13. Mormino, R. & Bungay, H. (2003). Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl. Microbiol. Biotechnol. 62(5–6), 503–506. DOI: 10.1007/s00253-003-1377-5.10.1007/s00253-003-1377-512827324
  14. 14. Fijałkowski, K., Żywicka, A., Drozd, R., Niemczyk, A., Junka, A.F., Peitler, D., Kordas, M., Konopacki, M., Szymczyk, P., El-Fray, M. & Rakoczy, R. (2015). Modification of bacterial cellulose through exposure to the rotating magnetic field. Carboh. Polym. 133, 52–60. DOI: 10.1016/j.carbpol.2015.07.011.10.1016/j.carbpol.2015.07.01126344254
  15. 15. Velizarov, S. (1999). Electric and magnetic fields in microbial biotechnology: possibilities, limitations and perspectives. Electro. Magnetobiol. 18(2), 185–212. DOI: 10.3109/15368379909012912.10.3109/15368379909012912
  16. 16. Filipič, J., Kraigher, B., Tepuš, B., Kokol, V. & Mandic-Mulec, I. (2012). Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Biores. Technol. 120, 225–232. DOI: 10.1016/j.biortech.2012.06.023.10.1016/j.biortech.2012.06.02322820111
  17. 17. Fojt, L., Strasak, L., Vetterl, V. & Smarda, J. (2004). Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63(1–2), 337–341. DOI: 10.1016/j.bioelechem.2003.11.010.10.1016/j.bioelechem.2003.11.01015110299
  18. 18. Strašák, L., Vetterl, V. & Fojt, L. (2005). Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn. Biol. Med. 24(3), 293–300. DOI: 10.1080/15368370500379715.10.1080/15368370500379715
  19. 19. Hristov, J. & Perez, V.H. (2011). Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3(1), 3–20.
  20. 20. Fijałkowski, K., Nawrotek, P., Struk, M., Kordas, M. & Rakoczy, R. (2015). Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria. Electromagn. Biol. Med. 34(1), 48–55. DOI: 10.3109/15368378.2013.869754.10.3109/15368378.2013.86975424460420
  21. 21. Fijałkowski, K., Nawrotek, P., Struk, M., Kordas, M. & Rakoczy, R. (2013). The effect of rotating magnetic field on growth rate, cell metabolic activity and biofilm formation by S. aureus and E. coli. J. Magn. 18(3), 289–296. DOI: 10.4283/JMAG.2013.18.3.289.10.4283/JMAG.2013.18.3.289
  22. 22. Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol. Biosci. 14(1), 10–32. DOI: 10.1002/mabi.201300298.10.1002/mabi.201300298
  23. 23. Toyosaki, H., Naritomi, T., Seto, A. & Yoshinaga, F. (1995). Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59(8), 1498–1502. DOI: 10.1271/bbb.59.1498.10.1271/bbb.59.1498
  24. 24. Park, J.K., Hyun, S.H. & Jung, J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5), 383–388. DOI: 10.1007/BF02933062.10.1007/BF02933062
  25. 25. Yoshino, T., Asakura, T. & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicon membrane. J. Ferment. Bioeng. 81(1), 32–36. DOI: 10.1016/0922-338X(96)83116-3.10.1016/0922-338X(96)83116-3
  26. 26. Serafica, G., Mormino, R. & Bungay, H. (2002). Inclusion of solid particle in bacterial cellulose. Appl. Microbiol. Biot. 58(6), 756–760. DOI: 10.1007/s00253-002-0978-8.10.1007/s00253-002-0978-8
  27. 27. Morrow, A.C., Dunstan, R.H., King, B.V. & Roberts, T.K. (2007). Metabolic effects of static magnetic fields on Streptococcus pyogenes. Bioelectromagnetics 28(6), 439–445. DOI: 10.1002/bem.20332.10.1002/bem.20332
  28. 28. Toda, K., Asakura, T., Fukaya, M., Entani, E. & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3), 228–231. DOI: 10.1016/S0922-338X(97)82059-4.10.1016/S0922-338X(97)82059-4
  29. 29. Rakoczy, R. (2010). Enhancement of solid dissolution process under the influence of rotating magnetic field. Chem. Eng. Process. 49(1), 42–50. DOI: 10.1016/j.cep.2009.11.004.10.1016/j.cep.2009.11.004
  30. 30. Fraňa, K., Stiller, J. & Grundmann, R. (2006). Transitional and turbulent flows driven by a rotating magnetic field. Magnetohydrodynamics 42(2–3), 187–197.
  31. 31. Walker, J.S. (1999). Models of melt motion, heat transfer and mass transport during crystal growth with strong magnetic field. Prog. Cryst. Growth Ch. 38(1), 195. DOI: 10.1016/S0960-8974(99)00012-1.10.1016/S0960-8974(99)00012-1
  32. 32. Rakoczy, R. & Masiuk, S. (2010). Influence of transverse rotating magnetic field on enhancement of solid dissolution process. J. AIChE 56(6), 1416–1433. DOI: 10.1002/aic.12097.10.1002/aic.12097
  33. 33. Moffatt, H.K. (1991). Electromagnetic stirring. Phys. Fluids A 3(5), 1336–1343.10.1063/1.858062
  34. 34. Anton-Leberre, V., Haanappel, E., Marsaud, N., Aka, H., Haddour, N. & Krähenbühl, L. (2010). Exposure to high static of pulsed magnetic fields: does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 31(1), 28–38. DOI: 10.1002/bem.20523.10.1002/bem.2052319603479
  35. 35. Gaafar, E.S.A., Hanafy, M.S., Tohamy, E.Y. & Ibahim, M.H. (2008). The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Rom. J. Biophys. 18(2), 145–169.
  36. 36. Zhang, Z., Yang, Z., Zhu, B., Hu, J., Liew, C.W., Zhang, Y., Leopold, J.A., Handy, D.E., Loscalzo, J. & Stanton, R.C. (2012). Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS One 7(11). DOI: 10.1371/journal.pone.0049128.10.1371/journal.pone.0049128350149723185302
  37. 37. Gao, W., Liu, Y., Zhou, J. & Pan, H. (2005). Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics 26(7), 558–563. DOI: 10.1002/bem.20133.10.1002/bem.2013316037957
  38. 38. Segatore, B., Setacci, D., Bennato, F., Cardigno, R., Amicosante, G. & Iorio, R. (2012). Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int. J. Micro. 7. DOI: 10.1155/2012/587293.10.1155/2012/587293333518522577384
  39. 39. Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D., Alston, M., Stringer, M.F., Betts, R.P., Baranyi, J., Peck, M.W. & Hinton, J.C. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194(3), 686–701. DOI: 10.1128/JB.06112-11.10.1128/JB.06112-11326407722139505
Language: English
Page range: 107 - 114
Published on: Jul 8, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Karol Fijałkowski, Radosław Drozd, Anna Żywicka, Adam F. Junka, Marian Kordas, Rafał Rakoczy, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.