1. Botalova, O.S., Frauenrath, J. & Dsikowitzky, T.L. (2009). Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43(15), 3797–3812. DOI: org/10.1016/j.watres.2009.06.006.10.1016/j.watres.2009.06.00619577787
2. Cechinel, M.A.P.M., Pozdniakova, D.A., Mazur, T.A., Boaventura, L.P. & Rui, A.R. (2016). Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. J. Chem. Eng. 286, 1–15. DOI: org/10.1016/j.cej.2015.10.042.10.1016/j.cej.2015.10.042
3. Kalantary, R.R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F.R., Jorfi, S. & Ja’fari, M. (2014). Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J. Environ. Health Sci. Eng. 24, 12(1), 143. DOI: 10.1186/s40201-014-0143-1.10.1186/s40201-014-0143-1430198725610635
4. Rezaei Kalantary, R.B.A., Mohseni Bandpi, A., Esrafili, A. & Jorfi, S. (2013). Modification of PAHs Biodegradation with Humic Compounds. J. Soil & Sedim. Contamin. 22, 185–198. DOI: org/10.1080/15320383.2013.722139.10.1080/15320383.2013.722139
6. Yeo, I.A., Yoon, S.H. & Yee, J.J. (2013). Development of an urban energy demand forecasting system to support environmentally friendly urban planning. Appl. Energy 110, 304–317. DOI: org/10.1016/j.apenergy.2013.04.065.10.1016/j.apenergy.2013.04.065
7. Jorfi, S., Rezaee, A., Mobeh-Ali, G.A. & Jaafarzadeh, N.A. (2013) Application of Biosurfactants Produced by Pseudomonas aeruginosa SP4 for Bioremediation of Soils Contaminated by Pyrene. J. Soil & Sedim. Contamin. 22, 890–911. DOI: org/10.1080/15320383.2013.770439.
8. Tayybi, T., Jorfi, S., Ghaffari, S. & Kujlu, R. 2016. Bioremediation of n-hexadecane contaminated soils using pseudomonas aeruginosa bacteria isolated from coastal areas. J. Mazan.Uni. Med. Sci. 26(140), 127–136.
9. Ahmadi, M.R.M.H.R., Jaafarzadeh, N., Mostoufid, A., Saeedie, R., Barzegarc, G. & Jorfia, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage 186, 55–63. DOI: org/10.1016/j.jenvman.2016.09.08810.1016/j.jenvman.2016.09.08827852522
10. Namata, N. & Patil, S.R.S. (2015). Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. J. Water Process. Eng. 7, 314–327. DOI: org/10.1016/j.jwpe.2015.08.003.10.1016/j.jwpe.2015.08.003
11. Soltani, R.D.J.S., Ramezani, H. & Purfadakari, S. (2016). Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultra. Sonochem 28, 69–78. DOI: 10.1016/j.ultsonch.2015.07.002.10.1016/j.ultsonch.2015.07.00226384885
13. Jorfi, S.D.C.S.R., Ahmadi, M., Khataeed, A. & Safarie, M. (2017). Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. J Environ Manage. 187, 111–121. DOI: org/10.1016/j.jenvman.2016.11.04210.1016/j.jenvman.2016.11.04227888712
16. Yang, Q.X.P., Ding, P., Chu, L. & Wang, J. (2015). Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Biores. Technol. 196, 169–175. DOI: org/10.1016/j.biortech.2015.07.087.10.1016/j.biortech.2015.07.08726233329
19. Qi, C.L., Xitao L., Chunye Z., Xiaohui M., Jun, T.H. & Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. J. Chem. Eng. 249, 6–14. DOI: org/10.1016/j.cej.2014.03.086.10.1016/j.cej.2014.03.086
21. Liang, C.J. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ. Sci. Technol. 44, 8203–8208. DOI: 10.1021/es903411a.10.1021/es903411a20879763
23. Weng, C.H. & Tsai, K.L. (2016). Ultrasound and heat enhanced persulfate oxidation activated with Fe(0) aggregate for the decolorization of C.I. Direct Red 23. Ultr. Sonochem. 29, 11–18. DOI: org/10.1016/j.ultsonch.2015.08.012.10.1016/j.ultsonch.2015.08.012
24. Ji, Y., Shi, Y., Dong, W., Wen, X., Jiang, M. & Lu, J. (2016). Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. J. Chem. Eng. 298, 225–233. DOI: org/10.1016/j.cej.2016.04.028.10.1016/j.cej.2016.04.028
25. Fan, Y.J.Y., Kong, D., Lu, J. & Zhou, Q. (2015). Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater. 300, 39–47. DOI: org/10.1016/j.jhazmat.2015.06.058.10.1016/j.jhazmat.2015.06.058
28. Chen, X.M.M. & Zhang, Y. (2016). Degradation of p-Nitrophenol by thermally activated persulfate in soil system. J. Chem. Eng. 283, 1357–1365. DOI: org/10.1016/j.cej.2015.08.107.10.1016/j.cej.2015.08.107
29. Vicente, F., Santos, A., Romero, A. & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. J. Chem. Eng. 170(1), 127–135. DOI: org/10.1016/j.cej.2011.03.042.10.1016/j.cej.2011.03.042
30. Zhang, M., Chen, X., Zhou, H., Murugananthan, M. & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. J. Chem. Eng. 264, 39–47. DOI: org/10.1016/j.cej.2014.11.060.10.1016/j.cej.2014.11.060
35. Hori, H.Y.A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S. & Kiatagawa, H. (2005). Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. J. Environ. Sci. Technol. 39, 2383–2388. DOI: 10.1021/es0484754.10.1021/es0484754
36. Ji, Y., Dong, C., Kong, D., Lu, J. & Zhou, Q. (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. J. Chem. Eng. 263, 45–54. DOI: org/10.1016/j.cej.2014.10.097.10.1016/j.cej.2014.10.097
38. Park, S., Lee, L.S., Medina, V.F., Zull, A. & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145, 376–383. DOI: 10.1016/j.chemosphere.2015.11.097.10.1016/j.chemosphere.2015.11.097
39. Kordkandi, S.A. & Forouzesh, M. (2014). Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation. J. Taiwan Ins. Chem. Eng. 45(5), 2597–2604. DOI: org/10.1016/j.jtice.2014.06.015.10.1016/j.jtice.2014.06.015
40. Zou, J., Ma, J., Zhang, X. & Xie, P. (2014). Rapid spectrophotometric determination of peroxymonosulfate in water with cobalt-mediated oxidation decolorization of methyl orange. J. Chem. Eng. 253, 34–39. DOI: org/10.1016/j.cej.2014.05.042.10.1016/j.cej.2014.05.042
41. Deng, Y. & Ezyske, C.M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45(18), 6189–6194. DOI: org/10.1016/j.watres.2011.09.015.10.1016/j.watres.2011.09.015
43. Ahmadian, M.Y., Van Ginkel, N., Zare, S.W., Rahimi, M.R. & Fatehizadeh, S.A. (2012). Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water Sci. Technol. 66(4), 754–760. DOI: 10.2166/wst.2012.232.10.2166/wst.2012.23222766863
45. Jorfi, S., Barzegar, G., Ahmadi, M., Darvishi Cheshmeh Soltani, R., Alah Jafarzadeh Haghighifard, N., Takdastan, A., Saeedi, R. & Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manage 177, 111–118. DOI: 10.1016/j.jenvman. DOI: org/10.1016/j.jcis.2014.08.035.
46. Cai, C.Z., Zhong, H. & Hou, X.L. (2014). Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res. 66, 473–485. DOI: org/10.1016/j.watres.2014.08.039.10.1016/j.watres.2014.08.03925259475