1. Selvamurugan, M., Doraisamy, P. & Maheswari, M. (2010). An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecol. Eng. 36, 1686–1690. DOI: 10.1016/j.ecoleng.2010.07.013.10.1016/j.ecoleng.2010.07.013
2. Zayas, T.P., Geissler, G. & Hernandez, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. 19, 300–305. DOI: 10.1016/S1001-0742(07)60049-7.10.1016/S1001-0742(07)60049-7
4. Satori, H. & Kawase, Y. (2014). Decolorization of dark brown colored coffee effluent using zinc oxide particles: The role of dissolved oxygen in degradation of colored compounds. J. Environ. Manage. 139, 172–179. DOI: 10.1016/j.jenvman.2014.02.032.10.1016/j.jenvman.2014.02.03224698992
6. Devi, R. (2010). Innovative Technology of COD and BOD Reduction from Coffee Processing Wastewater Using Avocado Seed Carbon (ASC). Water, Air, Soil Pollut. 207, 299–306. DOI: 10.1007/s11270-009-0137-2.10.1007/s11270-009-0137-2
7. Qiao, W., Takayanagi, K., Shofie, M., Niu, Q., Yu, H.Q. & Li, Y.Y. (2013). Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Bioresour. Technol. 150, 249–258. DOI: 10.1016/j.biortech.2013.10.002.10.1016/j.biortech.2013.10.00224177158
9. Abdel, S.G.A., Baraka, A.M., Omran, K.A. & Mokhtar, M.M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7, 6654–6665.10.1016/S1452-3981(23)15737-3
10. Aitbara, A., Cherifi, M., Hazourli, S. & Leclerc, J.P. (2016). Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water. Treat. 57, 3395–3404. DOI: 10.1080/19443994.2014.989411.10.1080/19443994.2014.989411
12. Moradi, M., Eslami, A. & Ghanbari, F. (2016). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin. Water. Treat. 57, 4659–4670. DOI: 10.1080/19443994.2014.995714.10.1080/19443994.2014.995714
13. Bui, H.M. (2016). Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81, 959–974. DOI: 10.2298/JSC160108032M.10.2298/JSC160108032M
14. Heffron, J., Marhefke, M. & Mayer, B.K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Sci. Rep. 6, 1–9. DOI: 10.1038/srep28478.10.1038/srep28478491484027324564
17. Körbahti, B.K., Aktaş, N. & Tanyolaç, A. (2007). Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 148, 83–90. DOI: 10.1016/j.jhazmat.2007.02.005.10.1016/j.jhazmat.2007.02.00517374443
18. Gengec, E., Kobya, M., Demirbas, E., Akyol, A. & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200-209. DOI: 10.1016/j.desal.2011.11.023.10.1016/j.desal.2011.11.023
19. Khayet, M., Zahrim, A.Y. & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem. Eng. J. 167, 77–83. DOI: 10.1016/j.cej.2010.11.108.10.1016/j.cej.2010.11.108
20. Federation, W.E. & American Public Health, A., Standard methods for the examination of water and wastewater, American Public Health Association (APHA), 2005.
21. Barrera-Díaz, C., Palomar-Pardavé, M., Romero-Romo, M. & Martínez, S. (2003). Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media. J. Appl. Electrochem. 33, 61–71. DOI: 10.1023/A:1022983919644.10.1023/A:1022983919644