1. Working Group and Contribution to the IPCC Fifth Assessment Report (2013). Climate Change 2013: The Physical Science Basis, Final Draft Underlying Scientific-Technical Assessment, Chapter 2: Observations: Atmosphere and Surface – Final Draft Underlying Scientific-Technical Assessment, Stockholm, Sweden.
2. Siemiątkowski, G. (2013). Emisja antropogenicznych gazów cieplarnianych i ich wpływ na efekt cieplarniany. Sci. Works Inst. Ceram. Buil. Mater. 15, 81–90.
3. Figueroa, D.J., Fout, T., Plasynski, S., McLlvried, H. & Srivastava, D.R. (2008). Advance in CO2 capture technology- The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2, 9–20. DOI: 10.1016/S1750-5836(07)00094-1.10.1016/S1750-5836(07)00094-1
4. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, B.R., Bland, E.A. & Wright, I. (2008). Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. (China), 20, 14–27. DOI: 10.1016/S1001-0742(08)60002-9.10.1016/S1001-0742(08)60002-9
5. Sevilla, M. & Fuertes, A.B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Ener. & Environ. Sci. 4(5), 1765–1771. DOI: 10.1039/C0EE00784F10.1039/c0ee00784f
7. Djeridi, W., Ouederni, A., Mansour, N.B., Llewellyn, P.L., Alyamani, A. & El, M. (2016). Effect of the both texture and electrical properties of activated carbon on the CO2 adsorption capacity. Mater. Res. Bull. 73, 130–139. DOI: 10.1016/j.materresbull.2015.08.03210.1016/j.materresbull.2015.08.032
10. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2015). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394
11. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005
13. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Technol. 13, 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4
14. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. &Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129, 158–161. DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158
15. Gong, Jiang, Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain. Chem. & Engine. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603h
16. Araki, S., Kiyohara, Y., Tanaka, S. & Miyake, Y. (2012). Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J. Coll. Inter. Sci. 388, 185–190. DOI: 10.1016/j.jcis.2012.06.061.10.1016/j.jcis.2012.06.06123022273
17. Akhtar, F., Liu, Q.L., Hedinab, N. & Bergstrom, L. (2012). Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 5, 7664–7676. DOI: 10.1039/C2EE21153J.10.1039/c2ee21153j
18. Palomino, M., Corma A., J., Jorda, L., Rey, F. & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217. DOI: 10.1039/c1cc16320e.10.1039/C1CC16320E
21. Debatin, F., Mollmer, J., Mondal, S.S., Behrens, K., Möller, A., Staudt, R., Thomas, A. & Holdt, H.J. (2012). White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+. J. Mater. Chem. 22, 4623–4631. DOI: 10.1039/c4tc02919d.10.1039/C4TC02919D
22. Chen, Q., Luo, M., Hammershøj, P., Zhou, D., Han, Y., Laursen, B.W., Yan, C.G., Han, B.H. (2012). Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. J. Am. Chem. Soc. 134, 6084–6087. DOI: 10.1021/ja300438w.10.1021/ja300438w22455734
23. Luo, Y., Li, B., Wang, W., Wu, K. & Tan, B. (2012). Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 24, 5703–5707. DOI: 10.1002/adma.201202447.10.1002/adma.20120244723008146
25. Kapica-Kozar, J., Pirog, E., Wrobel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.10.1016/j.micromeso.2016.05.024
26. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J. Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mater. 202, 241–249, DOI: 10.1016/j.micromeso.2014.10.013.10.1016/j.micromeso.2014.10.013
27. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R. J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808.
28. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O. & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135. DOI: 10.1039/C3EE41272E.10.1039/c3ee41272e
29. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New J. Chem. 38, 604–610. DOI: 10.1039/c3nj01187a.10.1039/C3NJ01187A
30. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8. DOI: 10.1016/j.jcat.2012.03.025.10.1016/j.jcat.2012.03.025
31. Dhakshinamoorthy, A., Navalon, S., Corma, A. & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 9217–9233. DOI: 10.1039/C2EE21948D.10.1039/c2ee21948d
32. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A. W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Utiliz. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004
34. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016
35. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mater. 22, 635–646. DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6
36. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008
42. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4
44. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6
47. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8
49. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046
50. Michalkiewicz, B, Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-X
51. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.10.1016/j.apcata.2011.01.014
53. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/145308
55. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3
56. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-z
57. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039
58. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153
60. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.10.1016/j.ijhydene.2015.12.146
63. Montagnaro, F., Silvestre-Albero, A., Silvestre-Albero, J., Rodríguez-Reinoso, F., Erto, A., Lancia, A. & Balsamo, M. (2015). Post-combustion CO2 adsorption on activated carbons with different textural properties. Microp. Mesop. Mat. 209, 157–164. DOI: 10.1016/j.micromeso.2014.09.037.10.1016/j.micromeso.2014.09.037
64. Díez, N., Álvarez, P., Granda, M., Blanco, C., Santamaría, R. & Menéndez, R. (2015). CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chem. Eng. J. 281, 704–712. DOI: 10.1016/j.cej.2015.06.126.10.1016/j.cej.2015.06.126
65. Ludwinowicz, J. & Jaroniec, M. (2015). Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94, 673–679. DOI: 10.1016/j.carbon.2015.07.052.10.1016/j.carbon.2015.07.052
66. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption. DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4
67. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012.02.087.10.1016/j.cej.2012.02.087
68. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R. & Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: DOI: 10.1016/j.cej.2013.04.061.10.1016/j.cej.2013.04.061
69. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17, 44–52. DOI: 10.1515/jaots-2014-0106.10.1515/jaots-2014-0106
71. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.10.1021/ie0514556
72. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A. 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.10.1016/j.apcata.2006.05.004
73. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010
74. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7
75. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148
77. Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846. DOI: 10.1016/j.jenvman.2007.07.031.10.1016/j.jenvman.2007.07.031
79. Spahisa, N., Addoun, A., Mahmoudi, H. & Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive stones. Desalination 222, 519–527. DOI: 10.1016/j.desal.0000.00.000.
80. Wang, J., Heerwig, A., Lohe, M.R., Oschatz, M., Borchardt, L. & Kaskel, S. (2012). Fungi-based porous carbons for CO2 adsorption and separation. J. Mater. Chem. 22, 13911–13913. DOI: 10.1039/C2JM32139D.10.1039/c2jm32139d
81. Pendyal, B., Johns, M.M., Marshall, W.E., Ahmenda, M. & Rao, R.M. (1999). The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons. Biores. Technol. 68, 247–254. DOI: 10.1016/S0960-8524(98)00153-9.10.1016/S0960-8524(98)00153-9
82. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Inter. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016.10.003.10.1016/j.jcis.2016.10.00327721076
83. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Inter. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002
84. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A: Physicochem. Eng. Aspects 411, 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.10.1016/j.colsurfa.2012.06.046
86. Grycova, B., Koutnik, I., Pryszcz, A. & Kaloc, M. (2016). Application of pyrolysis process in processing of mixed food wastes. Pol. J. Chem. Technol. 18(1), 19–23. DOI: 10.1515/pjct-2016-0004.10.1515/pjct-2016-0004
88. Deng, Sh., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures, Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.10.1016/j.cej.2014.04.115
89. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.10.1016/j.jcou.2017.01.006