1. Xiao-Gen, S. & Hui-Qiang L. (2009). Discussion on low-carbon economy and low-carbon building technology. Nat. Sci. 1, 37–40. DOI: 10.4236/ns.2009.11007.10.4236/ns.2009.11007
2. Leung, D.Y.C., Caramanna, G. & Maroto-Valer, M.M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443. DOI: 10.1016/j.rser.2014.07.093.10.1016/j.rser.2014.07.093
3. Gong, J. Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603h
4. Wang, Y.X., Liu, B.S. & Zheng, C. (2010). Preparation and Adsorption Properties of Corncob-Derived Activated Carbon with High Surface Area. J. Chem. Eng. 55, 4669–4676. DOI: 10.1021/je1002913.10.1021/je1002913
5. Alves Fiuza, Jr., R., Medeiros de Jesus Neto R., Bacelar Correia, L. & Carvalho Andrade, H.M. (2015). Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manage. 161, 198–205. DOI: 10.1016/j.jenvman.2015.06.053.10.1016/j.jenvman.2015.06.05326182993
6. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J., Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202, 241–249. DOI: 10.1016/j.micromeso.2014.10.013.10.1016/j.micromeso.2014.10.013
7. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808j.10.1039/C6NJ02808J
8. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst, J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004
9. Romero-Hermida, I., Santos, A., Pérez-López, R., García-Tenorio, R., Esquivias, L. & Morales-Flórez, V. (2017). New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J. CO2 Util. 18, 15–22. DOI: 10.1016/j.jcou.2017.01.002.10.1016/j.jcou.2017.01.002
10. Bradley, M.J., Ananth, R., Willauer, H.D., Baldwin, J.W., Hardy, D.R., DiMascio, F. & Williams, F.W. (2017). The role of catalyst environment on CO2 hydrogenation in a fixed-bed reactor. J. CO2 Util. 17, 1–9. DOI: 10.1016/j.jcou.2016.10.014.10.1016/j.jcou.2016.10.014
11. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6
12, Pakhare, D. & Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837. DOI: 10.1039/C3CS60395D.10.1039/C3CS60395D
16. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T, M and H forms of niobium (V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4
18. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046
20. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.10.1016/j.apcata.2011.01.014
21. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-X
23. Jarosińska, M., Lubkowski, K., Sośnicki, J.G. & Michalkiewicz, B. (2008). Application of halogens as catalysts of CH4 esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8
24. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3
25. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/14530820234080
27. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A 129, 153–157. DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153
28. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039
29. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-z
31. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas, Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.10.1016/j.ijhydene.2015.12.146
32. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22, 635–46. DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6
33. Kapica-Kozar, J., Piróg, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.10.1016/j.micromeso.2016.05.024
34. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008
35. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016
37. Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. (2009). Fundamentals of methane adsorption in microporous carbons. Micropor. Mesopor. Mat. 124, 110–116. DOI: 10.1016/j.micromeso.2009.04.041.10.1016/j.micromeso.2009.04.041
39. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of commercial activated carbons for CO2 adsorption. Acta Phys. Pol. A 129(3), 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394
40. Deng, S., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.10.1016/j.cej.2014.04.115
41. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12, Adsorption, accepted DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4
43. Gesikiewicz-Puchalska, A., Zgrzebnicki, M. & Michalkiewicz, B. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005
44. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Tech. 13(4), 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4
45, Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov N., Budinova, T., Razvigorova, M. & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg. 21, 133–142. DOI: 10.1016/S0961-9534(01)00027-7.10.1016/S0961-9534(01)00027-7
46. Sun, Y. & Webley, P.A. (2011). Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane, Carbon Dioxide, Nitrogen, and Hydrogen. Ind. Eng. Chem. Res. 50, 9286–9294. DOI: 10.1021/ie1024003.10.1021/ie1024003
47. Kapica, J., Pełech, R., Przepiórski, J. & Morawski, A.W. (2002). Kinetics of the Adsorption of copper and lead ions from aqueous solution on to WD-ekstra activated carbon. Adsorpt. Sci. Technol. 20, 441–452. DOI: 10.1260/026361702320644734.10.1260/026361702320644734
48. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012.02.087.10.1016/j.cej.2012.02.087
49. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R., Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: 10.1016/j.cej.2013.04.06110.1016/j.cej.2013.04.061
50. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17(1), 44–52. DOI: 10.1515/jaots-2014-0106.10.1515/jaots-2014-0106
52. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.10.1021/ie0514556
53. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A-Gen. 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.10.1016/j.apcata.2006.05.004
55. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010
56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2016). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7
57. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-014810.1515/gps-2016-0148
58. Adib Yahya, M., Al-Qodah, Z. & Zanariah Ngah, C.W. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46, 218–235. DOI: 10.1016/j.rser.2015.02.051.10.1016/j.rser.2015.02.051
59. Rashidi, N.A., Yusup, S. & Borhan, A. (2014). Development of Novel Low-Cost Activated Carbon for Carbon Dioxide Capture. Int. J. Chem. Eng. Appl. 5(29), 90–94. DOI: 10.7763/IJCEA.2014.V5.357.10.7763/IJCEA.2014.V5.357
60. Aygun, A., Yenisoy-Karakas, S. & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor. Mesopor. Mat. 66, 189–195. DOI: 10.1016/j.micromeso.2003.08.028.10.1016/j.micromeso.2003.08.028
61. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta. Phys. Pol. A 129(1), 158–161. DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158
62. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Activated carbons from molasses as CO2 sorbents. Acta. Phys. Pol. A 129(3), 402–404. DOI: 10.1269/APhysPolA.129.402.
63. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Utilization.
64. Deng, S., Hu, B., Chen, T., Wang, B., Huang, J., Wang, Y. & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21, 125–133. DOI 10.1007/s10450-015-9655-y.10.1007/s10450-015-9655-y
65. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Int. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016.10.003.10.1016/j.jcis.2016.10.00327721076
66. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Int. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002
67. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A. 411, 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.10.1016/j.colsurfa.2012.06.046
68. Rechnia, P., Malaika, A., Najder-Kozdrowska, L. & Kozłowski, M. (2012). The effect of ethanol on carbon-catalysed decomposition of methane. Int. J. Hydrogen Energy 37, 7512–7520. DOI: 10.1016/j.ijhydene.2012.02.014.10.1016/j.ijhydene.2012.02.014
69. Sayan, E. (2006). Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of from aqueous solution. Chem. Eng. J. 115, 213–218. DOI: 10.1016/j.cej.2005.09.024.10.1016/j.cej.2005.09.024
72. Li, D., Tian, Y., Li, L., Li, J. & Zhang, H. (2015). Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous. Mater. 22, 1581–1588. DOI: 10.1007/s10934-015-0041-7.10.1007/s10934-015-0041-7
73. David, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322–332. DOI: 10.1016/j.jaap.2014.09.021.10.1016/j.jaap.2014.09.021
74. Rashidi, A.M., Kazemi, D., Izadi, N., Pourkhalil, M., Jorsaraei, A., Ganji, E. & Lotfi, R. (2016). Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean J. Chem. Eng. 33(2), 616–622. DOI: 10.1007/s11814-015-0149-0.10.1007/s11814-015-0149-0