Have a personal or library account? Click to login

Ultrasonic treatment of baker’s yeast effluent using SnO2/TiO2 composite

Open Access
|Jul 2017

References

  1. 1. Dukkancı, M. & Gunduz, G. (2013). Sonolytic degradation of butyric acid in aqueous solutions. J. Env. Management 129, 564–568. DOI: 10.1016/j.jenvman.2013.08.024.10.1016/j.jenvman.2013.08.02424029459
  2. 2. Guo, Z., Feng, R., Li, J., Zheng, Z. & Zheng, Y. (2008). Degradation of 2,4-dinitrophenol by combining sonolysis and different additives. J. Hazard Mater. 158, 164–169. DOI: 10.1016/j.jhazmat.2008.01.056.10.1016/j.jhazmat.2008.01.05618321642
  3. 3. Guzman-Duque, F., Petrier, C., Pulgarin, C., Penuela, G. &Torres-Palma, A. (2011). Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultr. Sonochem. 18, 440–446. DOI: 10.1016/j.ultsonch.2010.07.019.10.1016/j.ultsonch.2010.07.01920797896
  4. 4. Pang, Y.L., Abdullah, A.Z. & Bhatia, S. (2011). Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277, 1–14. DOI: 10.1016/j.desal.2011.04.049.10.1016/j.desal.2011.04.049
  5. 5. Merouani, S., Hamdaoui, O., Saoudi, F. & Chiha, M. (2010). Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chem. Eng. J.158, 550–557. DOI: 10.1016/j.cej.2010.01.048.10.1016/j.cej.2010.01.048
  6. 6. Suslick, K.S. (1989). The chemical effects of ultrasound. Sci. Am. 260(82), 80–86.10.1038/scientificamerican0289-80
  7. 7. Xie, W., Qin, Y., Liang, D., Song, D. & He, D. (2011). Degradation of m-xylene solution using ultrasonic irradiation. Ultr. Sonochem. 18, 1077–1081. DOI: 10.1016/j.ultsonch.2011.03.014.10.1016/j.ultsonch.2011.03.01421489847
  8. 8. Eren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Env. Manage. 104, 127–141. DOI: 10.1016/j.jenvman.2012.03.028.10.1016/j.jenvman.2012.03.02822495014
  9. 9. Gao, J., Jiang, R., Wang, J., Kang, P., Wang, B., Li, Y., Li, K. & Zhang, X. (2011). The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation. Ultr. Sonochem. 18, 541–548. DOI: 10.1016/j.ultsonch.2010.09.012.10.1016/j.ultsonch.2010.09.01220980186
  10. 10. Gao, J., Jiang, R., Wang, J., Wang, B., Li, K., Kang, P., Li, Y. & Zhang, X. (2011). Sonocatalytic performance of Er3+:YAlO3/TiO2–Fe2O3 in organic dye degradation. Chem.l En.g J. 168, 1041–1048. DOI: 10.1016/j.cej.2011.01.079.10.1016/j.cej.2011.01.079
  11. 11. Abdullah, A.Z. & Ling, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J. Hazard Mater. 173, 159–167. DOI: 10.1016/j.hazmat.2009.08.060.
  12. 12. Jamalluddin, N.A. & Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultr. Sonochem. 18, 669–678. DOI: 10.1016/j.ultsonch.2010.09.004.10.1016/j.ultsonch.2010.09.004
  13. 13. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A. & Khalid, N.R. (2014). Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultr. Sonochem. 21, 761–773. DOI: 10.1016/j.ultsonch.2013.08.014.10.1016/j.ultsonch.2013.08.014
  14. 14. Anju, S.G., Jyothi, K.P., Joseph, S., Suguna, Y. & Yesodharan, E.P. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO2 and ZnO-TiO2. Res. J. Rec. Scien. 1, 191–201.
  15. 15. Wang, J., Jiang, Z., Zhang, L., Kang, P., Xie, Y., Lv, Y., Xu, R. & Zhang, X. (2009). Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano sized TiO2, nano sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultr. Sonochem. 16, 225–231. DOI: 10.1016/j.ultsonch.2008.08.005.10.1016/j.ultsonch.2008.08.005
  16. 16. Wang, J., Lv, Y., Zhang, L., Liu, B., Jiang, R., Han, G., Xu, R. & Zhang, X. (2010). Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultr. Sonochem. 17, 642–648. DOI: 10.1016/j.ultsonch.2009.12.016.10.1016/j.ultsonch.2009.12.016
  17. 17. Zeng, Y.F., Liu, Z.L. & Qin, Z.Z. (2009). Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. J. Hazard Mater. 162, 682–687. DOI: 10.1016/j.jhazmat.2008.05.094.10.1016/j.jhazmat.2008.05.094
  18. 18. Pala, A. & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard Mater. B127, 141–148. DOI: 10.1016/j.jhazmat.2005.06.033.10.1016/j.jhazmat.2005.06.033
  19. 19. Pena, M., Coca, M., Gonzalez, G., Rioja, R. & Garcia, M.T. (2003). Chemical oxidation of wastewater from molasses fermantation with ozone. Chemosphere 51, 893–900. DOI: 10.1016/S0045-6535(03)00159-0.10.1016/S0045-6535(03)00159-0
  20. 20. Zhou, Y., Liang, Z. & Wang, Y. (2008). Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate. Desalination 225, 301–311. DOI: 10.1016/j.desal.2007.07.010.10.1016/j.desal.2007.07.010
  21. 21. Verma, A.K., Raghukumar, C. & Naik, C.G. (2011). A novel hybrid technology for remediation of molasses-based raw effluents. Biores. Techn.102, 2411–2418. DOI: 10.1016/j.biortech.2010.10.112.10.1016/j.biortech.2010.10.11221111609
  22. 22. Liang, Z., Wang, Y., Zhou, Y. & Liu, H. (2009). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem. Eng J. 52, 88–94. DOI: 10.1016/j.cej.2009.03.036.10.1016/j.cej.2009.03.036
  23. 23. Liang, Z., Wang, Y., Zhou, Y., Liu, H. & Wu, Z. (2009). Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep. Pur. Techn. 68, 382–389. DOI: 10.1016/j.seppur.2009.60011.
  24. 24. Sangave, P.C. & Pandit, A.B. (2004). Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultr. Sonochem. 11, 197–203. DOI: 10.1016/j.ultsonch.2004.01.026.10.1016/j.ultsonch.2004.01.02615081981
  25. 25. Sangave, P.C. & Pandit, A.B. (2006). Ultrasound and enzyme assisted biodegradation of distillery wastewater. J. Env. Manage. 80, 36–46. DOI: 10.1016/j.jenvman.2005.08.010.10.1016/j.jenvman.2005.08.01016338051
  26. 26. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere 68, 42–52. DOI: 10.1016/j.chemosphere.2006.12.052.10.1016/j.chemosphere.2006.12.05217276488
  27. 27. Padoley, K.V., Saharan, V.K., Mudliar, S.N., Pandey, R.A. & Pandit, A.B. (2012). Cavitationally induced biodegradability enhancement of a distillery wastewater. J. Hazard Mater. 219–220, 69–74. DOI: 10.1016/j.jhazmat.2012.03.054.10.1016/j.jhazmat.2012.03.05422502898
  28. 28. Zhang, H., Duan, L. & Zhang, D. (2006). Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J. Hazard Mater. B138, 53–59. DOI: 10.1016/j.jhazmat.2006.05.034.10.1016/j.jhazmat.2006.05.03416806681
  29. 29. Yılmaz, E. (2014). Maya endüstrisi atıksuyunun ses ötesi dalgalarla arıtılması. M.Sc. Chemical engineering department, Hitit University, Corum, Turkey.
  30. 30. Gogate, P.R., Katekhaye, S.N. (2012). A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem. Eng. Process. Process. Int. 61, 23–29. DOI: 10.1016/j.cep.2012.06.016.10.1016/j.cep.2012.06.016
  31. 31. Talebian, N., Nilforoushan, M.R. & Mogaddas, F.J. (2013). Comparative study on the sonophotocatalytic degradation of hazardous waste. Cer. Intern. 39(5), 4913–4921. DOI: 10.1016/j.ceramint.2012.11.085.10.1016/j.ceramint.2012.11.085
  32. 32. Wang, J., Pan, Z., Zhang, Z., Zhang, X., Jiang, Y., Ma, T., Wen, F., Li, Y. & Zhang, P. (2007). The investigation on ultrasonic degradation of acid fuchsine in the presence of ordinary and nanometer rutile TiO2 and the comparison of their sonocatalytic activities. Dyes Pigm. 74, 525–530. DOI: 10.1016/j.dyepig.2006.03.010.10.1016/j.dyepig.2006.03.010
  33. 33. Ildırar, D. & Fındık, S. (2016). Effect of operational parameters on ultrasonic treatment of baker’s yeast effluent. Sakarya Uni. J. Sci. 20(2), 185–191.
Language: English
Page range: 26 - 32
Published on: Jul 8, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2017 Didem Ildirar, Serap Findik, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.