Have a personal or library account? Click to login
Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints Cover

Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints

Open Access
|May 2017

References

  1. 1. Fujishima, A., Zhang, X. & Tryk, D. (2007). Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydro. Energ. 322664-322672. DOI: 10.1016/j.ijhydene.2006.09.009.10.1016/j.ijhydene.2006.09.009
  2. 2. Fujishima, A., Zhang, X. & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582. DOI:10.1016/j.surfrep.2008.10.001.10.1016/j.surfrep.2008.10.001
  3. 3. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C. 13, 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001.10.1016/j.jphotochemrev.2012.06.001
  4. 4. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purifi cation. J. Photochem. Photobiol., C. 13, 247-262. DOI: 10.1016/j.jphotochemrev.2012.07.001.10.1016/j.jphotochemrev.2012.07.001
  5. 5. Wang, X., Liu, L. & Xu, H. (2013). Application of Photocatalytic Concrete Paint and its Effect of Decomposing Vehicle Exhaust. AMR. 683, 98-105. DOI: 10.4028/www.scientifi c.net/ amr.683.98.
  6. 6. Chen, J. & Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 44, 1899-1906. DOI: 10.1016/j.buildenv.2009.01.002.10.1016/j.buildenv.2009.01.002
  7. 7. Auvinen, J. & Wirtanen, L. (2008). The infl uence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42, 4101-4112. DOI: 10.1016/j.atmosenv.2008.01.031.10.1016/j.atmosenv.2008.01.031
  8. 8. Allen, N., Edge, M., Sandoval, G., Verran, J., Stratton, J. & Maltby, J. (2005). Photocatalytic Coatings for Environmental Applications. Photochem. Photobiol. 81, 279-290. DOI: 10.1562/2004-07-01-ra-221.1.10.1562/2004-07-01-RA-221.1
  9. 9. Salthammer, T. & Fuhrmann, F. (2007). Photocatalytic Surface Reactions on Indoor Wall Paint. Environ. Sci. Technol. 41, 6573-6578. DOI: 10.1021/es070057m.10.1021/es070057m17948810
  10. 10. Maggos, T., Bartzis, J., Liakou, M. & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 146, 668-673. DOI: 10.1016/j.jhazmat.2007.04.079.10.1016/j.jhazmat.2007.04.07917532129
  11. 11. Paušová, Š., Krýsa, J., Jirkovský, J., Prevot, V. & Mailhot, G. (2014). Preparation of TiO2-SiO2 composite photocatalysts for environmental applications. J. Chem. Technol. Biotechnol. 89, 1129-1135. DOI: 10.1002/jctb.4436.10.1002/jctb.4436
  12. 12. Águia, C., Ângelo, J., Madeira, L. & Mendes, A. (2010). Influence of photocatalytic paint components on the photoactivity of P25 towards NO abatement. Catal. Today. 151, 77-83. DOI: 10.1016/j.cattod.2010.01.057.10.1016/j.cattod.2010.01.057
  13. 13. Marolt, T., Škapin, A., Bernard, J., Živec, P. & Gaberšček, M. (2011). Photocatalytic activity of anatase-containing facade coatings. Surf. Coat. Technol. 206, 1355-1361. DOI: 10.1016/j. surfcoat.2011.08.053.
  14. 14. Baudys, M., Krýsa, J., Zlámal, M. & Mills, A. (2015). Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem. Eng. J. 261, 83-87. DOI: 10.1016/j. cej.2014.03.112.
  15. 15. Monteiro, R., Lopes, F., Silva, A., Ângelo, J., Silva, G., Mendes, A., Boaventura, R.A.R. & Vilar, V.J.P. (2014). Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxifi cation. Appl. Catal., B. 147, 988-999. DOI: 10.1016/j.apcatb.2013.09.031.10.1016/j.apcatb.2013.09.031
  16. 16. Tryba, B., Homa, P., Wróbel, R. & Morawski, A. (2014). Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Infl uence of paint composition. J. Photochem. Photobiol., A. 286, 10-15. DOI: 10.1016/j.jphotochem.2014.04.012.10.1016/j.jphotochem.2014.04.012
  17. 17. Zuccheri, T., Colonna, M., Stefanini, I., Santini, C. & Gioia, D. (2013). Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Mater. 6, 3270-3283. DOI: 10.3390/ma6083270.10.3390/ma6083270552124728811435
  18. 18. Pal, S., Contaldi, V., Licciulli, A. & Marzo, F. (2016). Self-Cleaning Mineral Paint for Application in Architectural Herit. Coat. 6, 48-57. DOI: 10.3390/coatings6040048.10.3390/coatings6040048
  19. 19. Akpan, U. & Hameed, B. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170, 520-529. DOI: 10.1016/j.jhazmat.2009.05.039.10.1016/j.jhazmat.2009.05.03919505759
  20. 20. Barrocas, B., Monteiro, O., Jorge, M. & Sério, S. (2013). Photocatalytic activity and reusability study of nanocrystalline TiO2 fi lms prepared by sputtering technique. Appl. Surf. Sci. 264, 111-116. DOI: 10.1016/j.apsusc.2012.09.136.10.1016/j.apsusc.2012.09.136
  21. 21. Addamo, M., Augugliaro, V., Di Paola, A., García-López, E., Loddo, V., Marcì, G. & Palmisano, L. (2008). Photocatalytic thin fi lms of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor. Thin Sol. Films. 516, 3802-3807. DOI: 10.1016/j.tsf.2007.06.139.10.1016/j.tsf.2007.06.139
  22. 22. Ismail, A., Bahnemann, D., Rathousky, J., Yarovyi, V. & Wark, M. (2011). Multilayered ordered mesoporous platinum/ titania composite fi lms: does the photocatalytic activity benefi t from the fi lm thickness? J. Mater. Chem. 21, 7802-7810. DOI: 10.1039/c1jm10366k.10.1039/c1jm10366k
  23. 23. Hao, D., Yang, Z., Jiang, C. & Zhang, J. (2014). Synergistic photocatalytic effect of TiO2 coatings and p-type semiconductive SiC foam supports for degradation of organic contaminant. Appl. Catal. B. 144, 196-202. DOI: 10.1016/j. apcatb.2013.07.016.
  24. 24. Malagutti, A., Mourão, H., Garbin, J. & Ribeiro, C. (2009). Deposition of TiO2 and Ag:TiO2 thin fi lms by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B. 90, 205-212. DOI: 10.1016/j. apcatb.2009.03.014.
  25. 25. Kumar, K., Raju, N. & Subrahmanyam, A. (2011). Thickness dependent physical and photocatalytic properties of ITO thin fi lms prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257, 3075-3080. DOI: 10.1016/j.apsusc.2010.10.119.10.1016/j.apsusc.2010.10.119
  26. 26. Chen, Y. & Dionysiou, D. (2006). Correlation of structural properties and fi lm thickness to photocatalytic activity of thick TiO2 fi lms coated on stainless steel. Appl. Catal. B. 69, 24-33. DOI: 10.1016/j.apcatb.2006.05.002.10.1016/j.apcatb.2006.05.002
  27. 27. Wu, C., Lee, Y., Lo, Y., Lin, C. & Wu, C. (2013). Thickness- dependent photocatalytic performance of nanocrystalline TiO2 thin fi lms prepared by sol-gel spin coating. Appl. Surf. Sci. 280, 737-744. DOI: 10.1016/j.apsusc.2013.05.053.10.1016/j.apsusc.2013.05.053
  28. 28. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Wells, N., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Banerjee, S., Fagan, R. & Pillai, S.C. (2014). Photocatalytic activity indicator inks for probing a wide range of surfaces. J. Photochem. Photobiol., A. 290 63-71. DOI: 10.1016/j.jphotochem.2014.06.007.10.1016/j.jphotochem.2014.06.007
  29. 29. Mills, A., O’Rourke, C., Lawrie, K. & Elouali, S. (2014). Assessment of the Activity of Photocatalytic Paint Using a Simple Smart Ink Designed for High Activity Surfaces. ACS Appl. Mater. Inter. 6, 545-552. DOI: 10.1021/am4046074.10.1021/am404607424320729
  30. 30. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Pillai, S.C., Leyland, N.S., Fagan, R., Neumann, F., Lampe, C. & Graumann, T. (2013). A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces, J. Photoch. Photobio. A. 272, 18-20. DOI: 10.1016/j.jphotochem.2013.08.004.10.1016/j.jphotochem.2013.08.004
  31. 31. Tryba, B., Wróbel, R., Homa, P. & Morawski, A. (2015). Improvement of photocatalytic activity of silicate paints by removal of K2SO4. Atmos. Environ. 115, 47-52. DOI: 10.1016/j. atmosenv.2015.05.047.
Language: English
Page range: 113 - 119
Published on: May 11, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Piotr Homa, Beata Tryba, Andżelika Gęsikiewicz-Puchalska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.