Have a personal or library account? Click to login
Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model Cover

Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

Open Access
|May 2017

References

  1. 1. Singhal, S.C. & Kendall, K. (2003). High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier.
  2. 2. Milewski, J., Swiercz, T., Badyda, K., Miller, A., Dmowski, A. & Biczel, P. (2010). The control strategy for a molten carbonate fuel cell hybrid system. Int. J. Hydrogen Energy 35(7), 2997-3000. DOI: 10.1016/j.ijhydene.2009.06.040.10.1016/j.ijhydene.2009.06.040
  3. 3. de Haart, L.G.J., Mougin, J., Posdziech, O., Kiviaho, J. & Menzler, N.H. (2009). Stack degradation in dependence of operation parameters; the real-SOFC sensitivity analysis. Fuel Cells. 9, 794-804. DOI: 10.1002/fuce.200800146.10.1002/fuce.200800146
  4. 4. Jiang, Y. & Virkar, A.V. (2001). A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J. Electrochem. Soc. 148(7), A706-A709. DOI: 10.1149/1.1375166.10.1149/1.1375166
  5. 5. Fuel Cell Handbook 7th Edition. (2004). EG G Technical Services, Inc.
  6. 6. O’Hayre, R., Cha, S.W., Colella, W. & Prinz, F. (2005). Fuel cell fundamentals. Wiley.
  7. 7. Yokokawa, H. (2003). Understanding materials compatibility. Ann. Rev. Mater. Rese. 33, 581-610. DOI: 10.1146/ annurev.matsci.33.022802.093856.10.1146/annurev.matsci.33.022802.093856
  8. 8. Staniforth, J. & Ormerod, R.M. (2003). Running solid oxide fuel cells on biogas. Ionics 9(5-6), 336-341. DOI: 10.1007/ BF02376583.10.1007/BF02376583
  9. 9. Wojcik, A., Middleton, H., Damopoulos, I. & Van Heerle, J. (2003). Ammonia as a fuel in solid oxide fuel cells. J. Power Sour. 118(1-2), 342-348. DOI: 10.1016/S0378-7753(03)00083-1.10.1016/S0378-7753(03)00083-1
  10. 10. Murray, E., Harris, S. & Jen, H. (2002). Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel. J. Electroch. Society, 149(9), A1127-A1131. DOI: 10.1149/1.1496484.10.1149/1.1496484
  11. 11. Vijay, P., Hosseini, S. & Tade, M. (2013). A novel concept for improved thermal management of the planar SOFC. Chem. Eng. Res. Des. 91, 560-572. DOI: http://dx.doi.org/10.1016/j.cherd.2012.09.004.10.1016/j.cherd.2012.09.004
  12. 12. Nakajo, A., Mueller, F., Brouwer, J., Van Herle, J. & Favart, D. (2011). Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling. Int. J. Hydrogen Energy, 37, 9269-9286. DOI: 10.1016/j.ijhydene.2012.03.023.10.1016/j.ijhydene.2012.03.023
  13. 13. Guan, W.B., Jin, L., Ma, X. & Wang, W.G. (2012). Investigation of Impactors on Cell Degradation Inside Planar SOFC Stacks. Fuel Cells. 12(6), 1085-1094. DOI: 10.1002/ fuce.201200063.10.1002/fuce.201200063
  14. 14. Ferraro, M. (2015). Telecom technology. Int. Innovation. 173, 64-66.
  15. 15. Jewulski, J. & Kupecki, J. (2015). Polish Patent PL404264- -A1. Warsaw, Poland.
  16. 16. Wakui, T., Yokoyama, R. & Shimizu, K. (2010). Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems. Energy 35, 740-750. DOI: 10.1016/j.energy.2009.09.029.10.1016/j.energy.2009.09.029
  17. 17. Kupecki, J., Jewulski, J. & Badyda, K. (2011). Selection of a fuel processing method for SOFC-based micro-CHP system. Rynek Energii. 97(6), 157-162.
  18. 18. Ang, S.M.C., Fraga, E.S., Brandon, N.P., Samsatli, N.J. & Brett, D.J.L. (2011). Fuel cell systems optimisation e methods and strategies. Int. J. Hydrogen Energy 36, 14678-14703. DOI: 10.1016/j.ijhydene.2011.08.053.10.1016/j.ijhydene.2011.08.053
  19. 19. Kandepu, R., Imsland, L., Foss, B.A., Stiller, C., Thorud, B. & Bolland, O. (2007). Modeling and control of a SOFC-GTbased autonomous power system. Energy. 32, 406-417. DOI: 10.1016/j.energy.2006.07.034.10.1016/j.energy.2006.07.034
  20. 20. Ferrari, M.L. (2015). Advanced control approach for hybrid systems based on solid oxide fuel cells. App. Energy145, 364-373. DOI: 10.1016/j.apenergy.2015.02.059.10.1016/j.apenergy.2015.02.059
  21. 21. Wolowicz, M., Kupecki, J., Wawryniuk, K., Milewski, J. & Motylinski, K. (2015). Analysis of nodalization effects on the prediction error of generalized fi nite element method used for dynamic modeling of hot water storage tank. Arch.Thermodyn. 36, 123-138. DOI: 10.1515/aoter-2015-0025.10.1515/aoter-2015-0025
  22. 22. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2015). Analysis of a micro-CHP unit with in-series SOFC stacks fed by biogas. Energy Procedia 75, 2021-2026. DOI: 10.1016/j.egypro.2015.07.265.10.1016/j.egypro.2015.07.265
  23. 23. Kupecki, J. (2013). Analysis of micro-combined heat and power unit with solid oxide fuel cells. Doctoral dissertation, Warsaw University of Technology, OWPW, Poland.
  24. 24. Kupecki, J., Milewski, J., Szczesniak, A., Bernat, R. & Motylinski, K. (2015). Dynamic numerical analysis of cross-, co-, and counter-current fl ow configurations of a 1 kW-class solid oxide fuel cell stack. Int. J. Hydrogen Energy 40(45), 15834-15844. DOI: 10.1016/j.ijhydene.2015.07.008.10.1016/j.ijhydene.2015.07.008
  25. 25. Kupecki, J., Jewulski, J. & Milewski, J. (2012). Multi-Level Mathematical Modeling of Solid Oxide Fuel Cells. In Clean Energy for Better Environment. Intech, Croatia.10.5772/50724
  26. 26. Retrieved July 21, 2014, from www.silca-online.de
  27. 27. Ki, J. & Kim, D. (2010). Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process. J. Power Sour. 195, 3186-3200. DOI: 10.1016/j. jpowsour.2009.11.129.
Language: English
Page range: 67 - 73
Published on: May 11, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Jakub Kupecki, Dawid Mich, Konrad Motylinski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.