Have a personal or library account? Click to login
Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica Cover

Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica

Open Access
|May 2017

References

  1. 1. Joo, J.H., Hassan, S.H.A. & Oh, S.E. (2010). Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeter. Biodegr. 64, 734-741. DOI: 10.1016/j.ibiod.2010.08.007.10.1016/j.ibiod.2010.08.007
  2. 2. Mudhoo, A., Garg, V.K. & Wang, S. (2012). Heavy Metals: Toxity and Removal by Biosorption. Lichtfouse, E., Schwarzbauer, J. & Robert, D. (Eds.), Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution (pp. 379-442). Springer Science+Business Media B.V.
  3. 3. Shinde, N.R., Bankar, A.V., Kumar, A.R. & Zinjarde, A.A. (2012). Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J. Environ. Manag. 102, 115-124. DOI: 10.1016/j.jenvman.2012.02.026.10.1016/j.jenvman.2012.02.026
  4. 4. Gavrilescu, M. (2010). Biosorption in Environmental Remediation. Fulekar, M.H. (Eds.) Bioremed. Technol.: Rec. Adv. (pp. 35-99). Capital Publishing Company. DOI: 10.1007/978-90-481-3678-0_1.10.1007/978-90-481-3678-0_1
  5. 5. Wang, J. & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195-226. DOI: 10.1016/j.biotechadv.2008.11.002.10.1016/j.biotechadv.2008.11.002
  6. 6. Beopoulos, A., Chardot, T. & Nicaud, J.M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91, 692-696. DOI: 10.1016/j.biochi.2009.02.004.10.1016/j.biochi.2009.02.004
  7. 7. Bankar, A.V., Kumar, A.R. & Zinjarde, S.S. (2009). Environmental and industrial applications of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 84, 847-865. DOI: 10.1007/ s00253-009-2156-8.10.1007/s00253-009-2156-8
  8. 8. Lanciotti, R., Gianotti, A., Baldi, D., Angrisani, R., Suzzi, G., Mastrocola, D. & Guerzoni, M.E. (2005). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Biores. Technol. 96, 317-322. DOI: 10.1016/j.biortech.2004.04.009.10.1016/j.biortech.2004.04.009
  9. 9. Lagergren, S. (1898). Zur theorie der sogenannten adsorptiong gelöster stoffe. Kungliga Svenska Vetenskapsakad. Stockholm: Handlingar. Bihang. 24(4), 1-39.
  10. 10. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process. Biochem. 34(5), 451-465.10.1016/S0032-9592(98)00112-5
  11. 11. Ertugay, N. & Bayhan, T.K. (2008). Biosorption of Cr(VI) from aqueous solution by biomass of Agaricus bisporus. J. Hazard. Mater. 154, 432-439. DOI: 10.1016/j.jhazmat.2007.10.070.10.1016/j.jhazmat.2007.10.07018078714
  12. 12. Weber, W.J. & Morris, J.C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. J. Sanit Eng. Div. Am. Soc. Civ. Eng. 89, 53-61.
  13. 13. Blázquez, G., Martín-Lara, M.A., Tenorio, G. & Calero, M. (2011). Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and termodynamic study. Chem. Eng. J. 168, 170-177. DOI: 10.1016/j. cej.2010.12.059.
  14. 14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004
  15. 15. Freundlich, H.M.F. (1906). Uber Die Adsorption in Losungen. Zeitschrift For Physikalische Chemie 57A, 385-470.
  16. 16. Lin, Y., Wang, X., Wang, B., Mohamad, O. & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotox. Environ. Safe. 77, 7-17. DOI: 10.1016/j.ecoenv.2011.09.016.10.1016/j.ecoenv.2011.09.016
  17. 17. Yin, H., He, B., Peng, H., Ye, J., Yang, F. & Zhang, N. (2008). Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism. J. Hazard. Mater. 158, 568-576. DOI: 10.1016/j. hazmat.2008.01.113.
  18. 18. Ahmad, M.F., Haydar, S. & Quraishi, A. (2013). Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int. Biodeter. Biodegr. 83, 119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016
  19. 19. Asfaram, A., Ghaedi, M. & Ghezelbash, G.R. (2016). Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarowia lipolytica ISF7 using a response Surface mathodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). RSC Adv. 6, 23599-23610. DOI: 10.1039/c5ra27170c.10.1039/C5RA27170C
  20. 20. Sari, A., Tuzen, M., Uluözlü, Ö.D. & Soylak, M. (2007). Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J. 37, 151-158. DOI: 10.1016/j.bej.2007.04.007.10.1016/j.bej.2007.04.007
  21. 21. Liu, Y., Cao, Q., Luo, F. & Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown alge. J. Hazard. Mater. 163, 931-938. DOI: 10.1016/j.jhazmat.2008.07.046.10.1016/j.jhazmat.2008.07.046
  22. 22. Özer, A. & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J. Hazard. Mater. B100, 219-229. DOI: 10.1016/S0304-3894(03)00109-2.10.1016/S0304-3894(03)00109-2
  23. 23. Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J. & Wei, G. (2010). Biosorption of Zn(II) by loive and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J. Hazard. Mater. 179, 151-159. DOI: 10.1016/j.hazmat.2010.02.072.
  24. 24. Pahlavanzadeh, H., Keshtkar, A.R., Safdari, J. & Abadi, Z. (2010). Biosorption of nickel(II) from aqueous solution by brown alge: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater. 175, 304-310. DOI: 10.1016/j.jhazmat.2009.10.004.10.1016/j.jhazmat.2009.10.00419880249
  25. 25. Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R. & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 157, 357-365. DOI: 10.1016/j. cej.2009.11.015.
  26. 26. Subbaiah, M.V. & Yun, Y.S. (2013). Biosorption of Nickel( II) from Aqueous Solution by the Fungal Mat of Trametes versicolor (Rainbow) Biomass: Equilibrium, Kinetics, and Thermodynamic Studies. Biotechnol. Bioproc. E. 18, 280-288. DOI: 10.1007/s12257-012-0401-y.10.1007/s12257-012-0401-y
  27. 27. Akhtar, K., Akhtar, M.W. & Khalid, A.M. (2008). Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J. Hazard. Mater. 156, 108-117. DOI: 10.1016/j. jhazmat.2007.12.002.
  28. 28. Baysal, Z., Çinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equilibrum and thermodynamic studies on biosorption of Pb(II) onto Candida ablicans biomass. J. Hazard. Mater. 161, 62-67. DOI: 10.1016/j.hazmat.2008,02,122.
  29. 29. Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunfl ower hulls: Kinetics, equilibrium and mechanizm of the proces. Chem. Eng. J. 192, 13-20. DOI: 10.1016/j.cej.2012.03.075.10.1016/j.cej.2012.03.075
  30. 30. Bueno, B.Y.M., Torem, M.L., Carvalho, R.J., Pino, G.A.H. & Mesquita, L.M.S. (2011). Fundamental aspects of biosorption of lead (II) ions onto a Rhodococcus oparus strain for environmental applications. Miner. Eng. 24, 1619-1624. DOI: 10.1016/j.mineng.2011.08.018.10.1016/j.mineng.2011.08.018
  31. 31. Suazo-Madrid, A., Morales-Barrera, L., Aranda-García, E. & Cristiani-Urbina, E. (2011). Nickel(II) biosorption by Rhodotorula glutinis. J. Ind. Microbiol. Biot. 38, 51-64. DOI: 10.1007/s.10295-010-0828-0.
  32. 32. Farhan, S.N. & Khadom, A.A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. Ind. Chem. 6, 119-130. DOI: 10.1007/s40090-015-0038-8.10.1007/s40090-015-0038-8
  33. 33. Horsfall, M. & Spiff, A.I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ grom aqueous solution by Caladium bicolor (Wild cocoyam) biomass. Electron. J. Biotech. 8(2), 162-169. DOI: 10.2225/vol8-issue2-fulltext-4.10.2225/vol8-issue2-fulltext-4
  34. 34. Usul, G. & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. J. Hazard. Mater. B135, 87-93. DOI: 10.1016/j.jhazmat.2005.11.029.10.1016/j.jhazmat.2005.11.02916406287
  35. 35. Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X. & Chen, Y.X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid Surf. B. 46, 101-107. DOI: 10.1016/j.colsurfb.2005.10.003.10.1016/j.colsurfb.2005.10.00316289732
  36. 36. Nasernejad, B., Zadeh, T.E., pour, B.B., Bygi, M.E. & Zamani, A. (2005). Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Proces Biochem. 40, 1319-1322. DOI: 10.1016/j.procbio.2004.06.010.10.1016/j.procbio.2004.06.010
  37. 37. Celaya, R.J., Noriega, J.A., Yeomans, J.H., Ortega, L.J. & Ruiz-Manriquez, A. (2000). Biosorption of Zn(II) by Thiobacillus ferrooxidans. Bioprocess. Eng. 22, 539-542. DOI: 10.1007/ s004499900106.10.1007/s004499900106
Language: English
Page range: 1 - 10
Published on: May 11, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Sławomir Wierzba, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.