Have a personal or library account? Click to login
Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose Cover

Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose

Open Access
|Dec 2016

References

  1. 1. Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47(2), 107–124.
  2. 2. Castro, C., Zuluaga, R., Álvarez, C., Putaux, J.L., Caro, G., Rojas, O.J., Mondragon, I. & Ganán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd. Polym. 89(4), 1033–1037. DOI: 10.1016/j.carbpol.2012.03.045.10.1016/j.carbpol.2012.03.045
  3. 3. Hameed, N.D., Al-Jailawi, M.H. & Jasim, H.M. (2012). Enhancement and optimization of cellulose production by Gluconacetobacter xylinus N2. Sci. J. King Faisal Univ. (Basic and Applied Sciences) 13(2), 77–89.
  4. 4. Nakagaito, A.N., Nogi, M. & Yano, H. (2010). Displays from transparent films of natural nanofibers. MRS Bulletin 35(3), 214–218. DOI: http://dx.doi.org/10.1557/mrs2010.65410.1557/mrs2010.654
  5. 5. Saibuatong, O.A. & Phisalaphong, M. (2010). Novo aloe vera - bacterial cellulose composite film from biosynthesis. Carbohyd. Polym. 79(2), 455–460. DOI: 10.1016/j.carbpol.2009.08.039.10.1016/j.carbpol.2009.08.039
  6. 6. Dahman, Y., Jayasuriya, K.E. & Kalis, M. (2010). Potential of biocellulose nanofibers production from agricultural renewable resources: Preliminary study. Appl. Biochem. Biotech. 162(6), 1647–1659. DOI: 10.1007/s12010-010-8946-8.10.1007/s12010-010-8946-8
  7. 7. Hornung, M., Ludwig, M., Gerrard, A.M. & Schmauder, H.P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng. Life Sci. 6(6), 546–551. DOI: 10.1002/elsc.200620162.10.1002/elsc.200620162
  8. 8. Bielecki, S., Krystynowicz, A., Turkiewicz, M. & Kalinowska, H. (2005). Bacterial cellulose. In A. Steinbüchel & S.K. Rhee (Eds.), Polysaccharides and Polyamides in the Food Industry (pp. 31–85). Weinheim: Wiley-VCH Verlag.
  9. 9. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C. & Sun, D. (2013). Recent advances in bacterial cellulose. Cellulose 21(1), 1–30. DOI: 10.1007/s10570-013-0088-z.10.1007/s10570-013-0088-z
  10. 10. Legge, R.L. (1990). Microbial cellulose as a specialty chemical. Biotechnol. Adv. 8(2), 303–319. DOI: 10.1016/0734-9750(90)91067-q.10.1016/0734-9750(90)91067-Q
  11. 11. Lin, S.P., Calvar, I.L., Catchmark, J.M., Liu, J.R., Demirci, A. & Cheng K.C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5), 2191–2219. DOI: 10.1007/s10570-013-9994-3.10.1007/s10570-013-9994-3
  12. 12. Ruka, D.R., Simon, G.P. & Dean, K.M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd. Polym. 89(2), 613–622. DOI: 10.1016/j.carbpol.2012.03.059.10.1016/j.carbpol.2012.03.05924750766
  13. 13. Surma-Ślusarska, B., Presler, S. & Danielewicz, D. (2008). Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text. East. Eur. 4(69), 108–111.
  14. 14. El-Saied, H., Basta, A.H. & Gobran, R.H. (2004). Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast. Technol. Eng. 43(3), 797–820. DOI: 10.1081/PPT-120038065.10.1081/PPT-120038065
  15. 15. Santos, S.M., Carbajo, J.M. & Villar, J.C. (2013). The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. BioResourses 8(3), 3630–3645.10.15376/biores.8.3.3630-3645
  16. 16. Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A. & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohyd. Polym. 86(3), 1187–1191. DOI: 10.1016/j.carbpol.2011.06.011.10.1016/j.carbpol.2011.06.011
  17. 17. Păvăloiu, R.D., Stoica-Guzun, A. & Dobre, T. (2015). Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U.P.B. Sci. Bull. Ser. B 77(1), 53–62.
  18. 18. Cheng, Q., Wang, J., McNeel, J. & Jacobson, P. (2010). Water retention value measurements of cellulosic materials using a centrifuge technique. BioResourses 5(3), 1945–1954.10.15376/biores.5.3.1945-1954
  19. 19. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V. & Koutinas, A. (2015). Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16(7), 14832–14849. DOI: 10.3390/ijms160714832.10.3390/ijms160714832
  20. 20. Hesse, S. & Kondo, T. (2005). Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohyd. Polym. 60(4), 457–465. DOI: 10.1016/j.carbpol.2005.02.018.10.1016/j.carbpol.2005.02.018
  21. 21. Koizumi, S., Tomita, Y., Kondo, T. & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose – interplay among physics, chemistry and biology. Macromol. Symp. 279(1), 110–118. DOI: 10.1002/masy.200950517.10.1002/masy.200950517
  22. 22. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. & Benziman, M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281. DOI: 10.1038/325279a0.10.1038/325279a0
  23. 23. Keshk, S. & Sameshima, K. (2005). Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4(6), 478–482. DOI: 10.5897/AJB2005.000-3087.
  24. 24. Toda, K., Asakura, T., Fukaya, M., Entani, E. & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3), 228–231. DOI: 10.1016/S0922-338X(97)82059-4.10.1016/S0922-338X(97)82059-4
  25. 25. Park, J.K., Hyun, S.H. & Jung, J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5), 383–388. DOI: 10.1007/BF02933062.10.1007/BF02933062
  26. 26. Çoban, E.P. & Biyik, H. (2011). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10(27), 5346–5354. DOI: 10.5897/AJB10.1693.
  27. 27. Son, H.J., Heo, M.S., Kim, Y.G. & Lee, S.J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33(1), 1–5. DOI: 10.1042/BA20000065.10.1042/BA2000006511171030
  28. 28. Yunoki, S., Osada, Y., Kono, H. & Takai, M. (2004). Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food. Sci. Technol. Res. 10(3), 307–313. DOI: 10.3136/fstr.10.307.10.3136/fstr.10.307
  29. 29. Park, J.K., Jung, J.Y. & Park, Y.H. (2003). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25(24), 2055–2059. DOI: 10.1023/B:BILE.0000007065.63682.18.10.1023/B:BILE.0000007065.63682.18
  30. 30. Pa’, E.N., Hamid, N.I.A., Khairuddin, N., Zahan, K.A., Seng, K.F. & Siddique, B.M. (2014). Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malaysiana 43(5), 767–773.
  31. 31. Lin, S.B., Hsu, C.P., Chen, L.C. & Chen, H.H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocol. 23(8), 2195–2203. DOI: 10.1016/j.foodhyd.2009.05.011.10.1016/j.foodhyd.2009.05.011
  32. 32. Schrecker, S.T. & Gostomski, P.A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnol. Lett. 27(19), 1435–1438. DOI: 10.1007/s10529-005-1465-y.10.1007/s10529-005-1465-y16231213
  33. 33. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K. & Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26), 7623–7631. DOI: 10.1016/j.polymer.2007.10.039.10.1016/j.polymer.2007.10.039
  34. 34. Tang, W., Jia, S., Jia, Y. & Yang, H. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microb. Biotechnol. 26(1), 125–131. DOI: 10.1007/s11274-009-0151-y.10.1007/s11274-009-0151-y
  35. 35. Al-Shamary, E.E. & Al-Darwash, A.K. (2013). Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. The Online J. Sci. Technol. 3(2), 194–203.
  36. 36. Shezad, O., Khan, S., Khan, T. & Park, J.K. (2010). Physico-chemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd. Polym. 82(1), 173–180. DOI: 10.1016/j.carbpol.2010.04.052.10.1016/j.carbpol.2010.04.052
  37. 37. Ougiya, H., Watanabe, K., Matsumura, T. & Yoshinaga. F. (1998). Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Biosci. Biotech. Bioch. 62(9), 1714–1719. DOI: 10.1271/bbb.62.1714.10.1271/bbb.62.171427392683
  38. 38. Shah, N., Ha, J.H. & Park, J.K. (2010). Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioproc. Eng. 15(1), 110–118. DOI: 10.1007/s12257-009-3064-6.10.1007/s12257-009-3064-6
  39. 39. Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. (1997). Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotech. Bioch. 61(11), 1862–1865. DOI: 10.1271/bbb.61.1862.10.1271/bbb.61.186227396738
  40. 40. Liu, Y., Thibodeaux, D., Gamble, G., Bauer, P. & van Derveer, D. (2012). Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity. Appl. Spectrosc. 66(8), 983–986. DOI: 10.1366/12-06611.10.1366/12-0661122800914
Language: English
Page range: 117 - 123
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Karol Fijałkowski, Anna Żywicka, Radosław Drozd, Marian Kordas, Rafał Rakoczy, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.