Have a personal or library account? Click to login
Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler Cover

Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

By: Piotr Krawczyk  
Open Access
|Dec 2016

References

  1. 1. Wrzesińska, B., Krzywda, R., Wąsowski, T., Krawczyk, P. & Badyda, K. (2015). Technologia selektywnej niekatalitycznej redukcji tlenków azotu pod kątem zastosowania jej w kotłach dla energetyki przemysłowej i ciepłownictwa (A selective non-catalytic reduction of nitrogen oxides technology for application in industrial and municipal heating boilers). Przem. Chem. 94(4) 608–613. DOI: 10.15199/62.2015.4.22 (in Polish).10.15199/62.2015.4.22
  2. 2. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), OJ L 334/17.
  3. 3. Regulation of the Minister of Environment of 4 November 2014 on emission standards for certain types of plants, fuel combustion sources.
  4. 4. Badyda, K. & Lewandowski, J. (2009). Uwarunkowania wzrostu zapotrzebowania na gaz dla energetyki i ciepłownictwa [Determinants of growth in demand for gas for power and heat generation]. Rynek Energ. 5(84) (in Polish).
  5. 5. Krawczyk, P. & Badyda, K. (2014). Numerical analysis of the impact of parameters of urea solution injection on reagent penetration inside the combustion chamber of a WR 25 boiler. Rynek Energ. 6, 115–139.
  6. 6. Warych, J. (1994). Oczyszczanie przemysłowych gazów odlotowych [Treatment of industrial flue gases]. WNT, Warsaw, Poland (in Polish).
  7. 7. Rota, R., Antos, D., Zanoelo, E.F. & Morbidelli, M. (2002). Experimental and modeling analysis of the NO x OUT process. Chem. Engine. Sci. 57(1), 27–38. http://dx.doi.org/10.1016/S0009-2509(01)00367-010.1016/S0009-2509(01)00367-0
  8. 8. Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for Large Combustion Plants, European Commission, July 2006.
  9. 9. EPA (2010). Methane and Nitrous Oxide Emissions from Natural Sources (PDF). U.S. Environmental Protection Agency, Washington, DC, USA.
  10. 10. KOBIZE (2014). National Inventory Report 2014 – Greenhouse gas inventory in Poland for 1988–2012.
  11. 11. Polish Ministry of Environment. (2003). Strategies for reduction of greenhouse gas emissions in Poland until 2020.
  12. 12. Muzio, L.J., Quartucy G.C. & Cichanowiczy J.E. (2002). Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies. Inter. J. Environ. Pollut. 17(1–2). DOI: 10.1504/IJEP.2002.000655.10.1504/IJEP.2002.000655
  13. 13. Jodal, M., Nielsen, C., Hulgaard, T. & Dam-Johansen, K. (1991). Pilot-scale experiments with NH3 and urea as reductants in selective non-catalytic reduction of nitric oxide. 23rd Symp. (Int.) on Combus. pp. 237–243. DOI: 10.1016/S0082-0784(06)80265-1.10.1016/S0082-0784(06)80265-1
  14. 14. Gentemann, A.M.G. & Caton, J.A. (2001). Decomposition and Oxidation of a Urea-Water Solution as Used in Selective Non-Catalytic Removal (SNCR) Processes. 2nd Joint Meeting of the United States Sections: The Combustion Institute, 25–28 March 2001, Oakland, CA.
  15. 15. M endoza-Covarrubias, C., Romero, C.E., Hernandez-Rosales, F. & Agarwal, H. (2011). N2O Formation in Selective Non-Catalytic NOx Reduction Processes. J. Environ. Protect. 2, 1095–1100. DOI: 10.4236/jep.2011.28126.10.4236/jep.2011.28126
  16. 16. Weijuan, Y., Junhu, Z., Zhijun, Z. & Kefa, C. (2007). Nitrous oxide formation and emission in selective non-catalytic reduction process. Front. Energ. Pow. Eng. China 1(2), 228–232. DOI: 10.1007/s11708-007-0031-9.10.1007/s11708-007-0031-9
  17. 17. Krawczyk, P., Badyda, K., Szczygieł, J. & Młynarz, S. (2015). Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters. Arch. Thermodyn. 36(3), 3–14. DOI: 10.1515/aoter-2015-0018.10.1515/aoter-2015-0018
  18. 18. Hernik, B. (2012). Numerical modeling of BP 1150 boiler by commercial numerical code. J. Pow. Technol. 92(1), 34–47.
  19. 19. Winter, F., Wartha, C. & Hofbauer, H. (1999). NO and N2O formation during the combustion of wood, straw, malt waste and peat. Biores. Technol. 70, 39–49. http://dx.doi.org/10.1016/S0960-8524(99)00019-X10.1016/S0960-8524(99)00019-X
  20. 20. Blejchař, T. & Dolníčková, D. (2013). Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model. EPJ Web of Conferences 45, 01015 DOI: 10.1051/epjconf/2014534501015.
  21. 21. Kramlich, J., Cole, J., McCarthy, J., Lanier, J. & McSorley, J. (1987). Mechanisms of N2O Formation in Flames. Fall Meeting, Paper 1A-006, Western States Section, The Combustion Institute.
Language: English
Page range: 104 - 109
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Piotr Krawczyk, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.