Have a personal or library account? Click to login
Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs) Cover

Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs)

Open Access
|Dec 2016

References

  1. 1. March, J. (1992). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (7th ed.). New York, USA: John Wiley & Sons.
  2. 2. Song, A., Wang, X. & Lam, K.S. (2003). A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett. 44(9), 1755–1758. DOI:10.1016/S0040-4039(03)00108-4.10.1016/S0040-4039(03)00108-4
  3. 3. Bigi, F., Chesini, L., Maggi, R. & Sartori, G.J. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. J. Org. Chem. 64(3), 1033–1035. DOI: 10.1021/jo981794r.10.1021/jo981794r
  4. 4. Flachsmann, F. (2013). Fragrance compounds. U.S. Patent No. 8575386B2. Duebendorf C.H.: United States Patent Application.
  5. 5. Hoshino, M., Sugiyama, M., Kawamata, A., Joukura, H. & Imokawa, G. 1994. Naphtalenmethylenemalonic diesters and UV absorbers and cosmetic compositions containing the diesters. EU Pat. EP 663206A1.
  6. 6. Beutler, U., Fuenfschilling, P.C. & Steinkemper, A. (2007). An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Org. Process Res. Dev. 11(3), 341–343. DOI: 10.1021/op060244p.10.1021/op060244p
  7. 7. Martinez, C.A., Hu, S., Dumond, Y., Tao, J., Kelleher, P. & Tully, L. (2008). Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 12(3), 392–398. DOI: 10.1021/op7002248.10.1021/op7002248
  8. 8. Walker, S.D., Borths, C.J., DiVirgilio, E., Huang, L., Liu, P., Morrison, H., Sugi, K., Tanaka, M., Woo, J.C.S. & Faul, M.M. (2011). Development of a scalable synthesis of a GPR40 receptor agonist. Org. Process Res. Dev. 15(3), 570–580. DOI: 10.1021/op1003055.10.1021/op1003055
  9. 9. Menegatti, R. (2012). Designing highly efficient solvents for the Knoevenagel condensation: two novel dicationic dimethyl phosphate ionic liquids. In: M. Kidwai & N.K. Mishra (Eds.), Green Chemistry – Environmentally Benign Approaches (pp. 13–32). Intech, Rijeka.
  10. 10. Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice (1st ed.). Oxford University Press, New York.
  11. 11. Anastas, P.T. & Kirchhoff, M.M. (2002). Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35(9), 686–694. DOI: 10.1021/ar010065m.10.1021/ar010065m
  12. 12. Reddy, T.I. & Verma, R.S. (1997). Rare earth-exchanged NaY zeolite-promoted Knoevenagel condensation. Tetrahedron Lett. 38(10), 1721–1724. DOI: 10.1016/S0040-4039(97)00180-9.10.1016/S0040-4039(97)00180-9
  13. 13. McCluskey, A., Robinson, P.J., Hill, T., Scott, J.L. & Edwards, J.K. (2002). Green chemistry approaches to the Knoevenagel condensation: comparison of ethanol, water and solvent free (dry grind) approaches. Tetrahedron Lett. 43(17), 3117–3120. DOI: 10.1016/S0040-4039(02)00480-X.10.1016/S0040-4039(02)00480-X
  14. 14. Bigi, F., Conforti, M.L., Maggi, R., Piccinno, A. & Sartori, G. (2000). Clean Synthesis in Water: Uncatalysed Preparation of Ylidenemalononitriles. Green Chem. 2, 101–103. DOI: 10.1039/B001246G.10.1039/b001246g
  15. 15. Gomes, M.N., de Oliveira, C.M.A., Garrote, C.F.D., de Oliveira, V. & Menegatti, R. (2011). Condensation of ethyl cyanoacetate with aromatic aldehydes in water, catalyzed by morpholine. Synth. Commun. 41(1), 52–57. DOI: 10.1080/00397910903531771.10.1080/00397910903531771
  16. 16. Mallouk, S., Bougrin, K., Laghzizil, A. & Benhida, R. (2010). Microwave-Assisted and Efficient Solvent-free Knoevenagel Condensation. A Sustainable Protocol Using Porous Calcium Hydroxyapatite as Catalyst. Molecules 15(2), 813–823. DOI: 10.3390/molecules15020813.10.3390/molecules15020813
  17. 17. Tahmassebi, D., Wilson, L.J.A. & Kieser, J.M. (2009). Knoevenagel Condensation of Aldehydes with Meldrum’s Acid in Ionic Liquids. Synth. Commun. 39(14), 2605–2613. DOI: 10.1080/00397910802663345.10.1080/00397910802663345
  18. 18. Otaibi, A.A., Gordon, C.P., Gilbert, J., Sakoff, J.A. & McCluskey, A. (2014), The influence of ionic liquids on the Knoevenagel condensation of 1H-pyrrole-2-carbaldehyde with phenyl acetonitriles – cytotoxic 3-substituted-(1H-pyrrol-2-yl)acrylonitriles. RSC Adv. 4, 19806–19813. DOI: 10.1039/c3ra47418f.10.1039/c3ra47418f
  19. 19. Morrison, D.W., Forbes, D.C. & Davis, Jr J.H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42(35), 6053–6055. DOI: 10.1016/S0040-4039(01)01228-X.10.1016/S0040-4039(01)01228-X
  20. 20. Suresh, J. & Sandhu, J. (2013). Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Org. Med. Chem. Lett. 3:(2), 1–6. DOI: 10.1186/2191-2858-3-2.10.1186/2191-2858-3-2359950723458122
  21. 21. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V., Farahani, M.D. & Kruger, H.G. (2014). Tandem Knoevenagel-Michael-cyclocondensation reactions of malononitrile, various aldehydes and dimedone using acetic acid functionalized ionic liquid. New J. Chem. 38, 2342–2347. DOI: 10.1039/C3NJ01509B.10.1039/c3nj01509b
  22. 22. Zhang, J., Zhang, Y. & Zhou, Z. (2014). Hydroxyl ammonium ionic liquid-catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinediones under solvent-free conditions. Green Chem. Lett. Rev. 7(1), 90–94. DOI: 10.1080/17518253.2014.895866.10.1080/17518253.2014.895866
  23. 23. Ying, A., Ni, Y., Xu, S., Liu, S., Yang, J. & Li, R. (2014). Novel DABCO Based Ionic Liquids: Green and Efficient Catalysts with Dual Catalytic Roles for Aqueous Knoevenagel Condensation. Ind. Eng. Chem. Res. 53(14), 5678–5682. DOI: 10.1021/ie500440w.10.1021/ie500440w
  24. 24. Zhao, S., Wang, X. & Zhang, L. (2013). Rapid and efficient Knoevenagel condensation catalyzed by a novel protic ionic liquid under ultrasonic irradiation. RSC Adv. 3, 11691–11696. DOI: 10.1039/C3RA40809D.10.1039/c3ra40809d
  25. 25. Tzani, A., Douka, A., Papadopoulos, A., Pavlatou, E.A., Voutsas, E. & Detsi, A. (2013). Synthesis of Biscoumarins Using Recyclable and Biodegradable Task-Specific Ionic Liquids. ACS Sustainable Chem. Eng. 1(9), 1180–1185. DOI: 10.1021/sc4001093.10.1021/sc4001093
  26. 26. Siddiqui, Z.N. & Khan, K. (2014). [Et3NH][HSO4]-Catalyzed Efficient, Eco-Friendly, and Sustainable Synthesis of Quinoline Derivatives via Knoevenagel Condensation. ACS Sustainable Chem. Eng. 2(5), 1187–1194. DOI: 10.1021/sc500023q.10.1021/sc500023q
  27. 27. Hu, X., Zhang, B., Gao, Y. & Dong, S. (2014). Knoevenagel reactions catalyzed by ionic liquids. J. Chem. Pharm. Res. 6, 864–868. CODEN:JCPRC5 ISSN:0975-7384.
  28. 28. Zicmanis, A. & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Lett. 55(12), 2027–2028. DOI: 10.1016/j.tetlet.2014.02.035.10.1016/j.tetlet.2014.02.035
  29. 29. Moriel, P., Garcia-Suarez, E.J., Martinez, M., Garcia, A.B., Montes-Moran, M.A., Calvino-Casilda, V. & Banares, M.A. (2010). Synthesis, characterization, and catalytic activity of ionic liquids based on biosources. Tetrahedron Lett. 51(37) 4877–4881. DOI: 10.1016/j.tetlet.2010.07.060.10.1016/j.tetlet.2010.07.060
  30. 30. Ouyang, F., Zhou, Y., Li, Z.M., Hu, N. & Tao, D.J. (2014). Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng. 31(8), 1377–1383. DOI: 10.1007/s11814-014-0077-4.10.1007/s11814-014-0077-4
  31. 31. Fukumoto, K., Yoshizawa, M. & Ohno, H. (2005). Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 127(8), 2398–2399. DOI: 10.1021/ja043451i.10.1021/ja043451i15724987
  32. 32. Allen, C.R., Richard, P.L., Ward, A.J., Van de Water, L.G.A., Masters, A.F. & Maschmeyer, T. (2006). Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett. 47(41), 7367–7373. DOI: 10.1016/j.tetlet.2006.08.007.10.1016/j.tetlet.2006.08.007
  33. 33. Ossowicz, P., Janus, E., Schroeder, G. & Rozwadowski, Z. (2013). Spectroscopic studies of amino acid ionic liquid-supported Schiff bases. Molecules 18(5), 4986–5004. DOI: 10.3390/molecules18054986 18, 4986–5004.10.3390/molecules18054986626971023629755
Language: English
Page range: 90 - 95
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Paula Ossowicz, Zbigniew Rozwadowski, Marcin Gano, Ewa Janus, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.