Have a personal or library account? Click to login
Influence of titanium dioxide modification on the antibacterial properties Cover

Influence of titanium dioxide modification on the antibacterial properties

Open Access
|Dec 2016

References

  1. 1. Pigeot-Rémy, S., Simonet, F., Errazuriz-Cerda, E., Lazzaroni, J.C., Atlan, D. & Guillard, C. (2011). Photocatalysis and disinfection of water: Identification of potential bacterial targets. Appl. Catal., B. 104(3–4), 390–398. DOI: 10.1016/j.apcatb.2011.03.001.10.1016/j.apcatb.2011.03.001
  2. 2. Grojec, A. (2015) (Eds.) Progress on sanitation and drinking water – 2015 update and MDG assessment, WHO Press 2015.
  3. 3. Wang, W., Huang, G., Yu, J.C. & Wong, P.K. (2015). Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. 34, 232–247. DOI: 10.1016/j.jes.2015.05.003.10.1016/j.jes.2015.05.003
  4. 4. Huaa, G. & Reckhow, D.A. (2007). Comparison of dis-infection byproduct formation from chlorine and alternative disinfectants. Water Res. 41(8), 1667–1678. DOI: 10.1016/j.watres.2007.01.032.10.1016/j.watres.2007.01.032
  5. 5. Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37(8), 1443–1467. DOI: 10.1016/S0043-1354(02)00457-8.10.1016/S0043-1354(02)00457-8
  6. 6. Lazar, M.J., Varghese, S. & Nair, S.S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2(4), 527–601. DOI: 10.3390/catal2040572.10.3390/catal2040572
  7. 7. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001.10.1016/j.jphotochemrev.2012.06.001
  8. 8. Augugliaroa, V., Bellarditaa, M., Loddoa, V., Palmisanoa, G., Palmisanoa, L. & Yurdakal, S. (2002). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 224–245. DOI: 10.1016/j.jphotochemrev.2012.04.003.10.1016/j.jphotochemrev.2012.04.003
  9. 9. Olmez, H. & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Food Sci. Techn. 42(3), 686–693. DOI: 10.1016/j.lwt.2008.08.001.10.1016/j.lwt.2008.08.001
  10. 10. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997–3027. DOI: 10.1016/j.watres.2010.02.039.10.1016/j.watres.2010.02.03920378145
  11. 11. Mccullagh, C., Robertson, J.M.C., Bahnemann, D.W. & Robertson, P.K.J. (2007). The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic microorganism: a review. Res. Chem. Intermed. 33(3), 359–375. DOI: 10.1163/156856707779238775.10.1163/156856707779238775
  12. 12. Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J. & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Cat. Today 147(1), 1–60. DOI: 10.1016/j.cattod.2009.06.018.10.1016/j.cattod.2009.06.018
  13. 13. Kowalska, E., Mahaney, O.O.P., Abe, R. & Ohtani, B. (2010). Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355. DOI: 10.1039/B917399D.10.1039/b917399d20449347
  14. 14. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J. & Whangbo, M.H. (2008). Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Edit. 47(41), 7931–7933. DOI: 10.1002/anie.200802483.10.1002/anie.20080248318773395
  15. 15. Morawski, A.W., Janus, M., Tryba, B., Inagaki, M. & Kałucki, K. (2006). TiO2 – anatase modified by carbon as the photocatalyst under visible light. CR Chim. 9(5–6), 800–805. DOI: 10.1016/j.crci.2005.03.021.10.1016/j.crci.2005.03.021
  16. 16. Zhou, N., Polavarapu, L., Gao, N., Pan, Y., Yuan, P., Wangbc, G. & Xu, Q.H. (2013). TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5, 4236–4241. DOI: 10.1039/C3NR00517H.10.1039/c3nr00517h23546548
  17. 17. Ilieva, V., Tomovaa, D., Rakovskya, S., Eliyas, A. & Li Puma, G. (2010). Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J. Mol. Catal. A-Chem. 327(1–2), 51–57. DOI: 10.1016/j.molcata.2010.05.012.10.1016/j.molcata.2010.05.012
  18. 18. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. & Matsumura, M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Cat. A-General 265(1), 115–121. DOI: 10.1016/j.apcata.2004.01.007.10.1016/j.apcata.2004.01.007
  19. 19. Janus, M., Markowska-Szczupak, A., Kusiak-Nejman, E. & Morawski, A.W. (2012). Disinfection of E. coli by carbon modified TiO2 photocatalysts. Environ. Prot. Eng. 38(2), 89–97. DOI: 10.5277/epe120208.
  20. 20. Ohno, T., Sarukawa, K. & Matsumura, M. (2001). Photo-catalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 105(12), 2417–2420. DOI: 10.1021/jp003211z.10.1021/jp003211z
  21. 21. Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl. Cat. B: Environ. 76, 257–263. DOI: 10.1016/j.apcatb.2007.05.026.10.1016/j.apcatb.2007.05.026
  22. 22. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006). Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. 110(9), 4066–4072. DOI: 10.1021/jp0564400.10.1021/jp056440016509698
  23. 23. Shi, H., Li, G., Suna, H., Ana, T., Zhao, H. & Wong, P.K. (2014). Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X = Cl, Br, I) plasmonic photocatalysts: Bacterial performance and deactivation mechanism. Appl. Cat.-B: Environ. 158–159, 301–307. DOI: 10.1016/j.apcatb.2014.04.033.10.1016/j.apcatb.2014.04.033
  24. 24. Hadrup, N. & Lam, H.R. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regul. Toxicol. Pharmacol. 68(1), 1–7. DOI: 10.1016/j.yrtph.2013.11.002.10.1016/j.yrtph.2013.11.00224231525
  25. 25. Kowalska, E., Wei, Z., Karabiyik, B., Herissan, A., Janczarek, M., Endo, M., Markowska-Szczupak, A., Remita, H. & Ohtani, B. (2015). Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Cat. Today 252, 136–142. DOI: 10.1016/j.cattod.2014.10.038.10.1016/j.cattod.2014.10.038
  26. 26. Sütterlin, S. (2015). Aspects of Bacterial Resistance to Silver. Dissertations from the Faculty of Medicine 1084. Uppsala Universitet.
  27. 27. Cheng, C.L., Sun, D.S., Chu, W.C., Tseng, Y.H., Ho, H.C., Wang, J.B., Chung, P.H., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S. & Chang, H.H. (2009). The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bacteridical performance. J. Biom. Sci. 16(1), 7. DOI: 10.1186/1423-0127-16-7.10.1186/1423-0127-16-7264497319272171
  28. 28. Choina, J., Dolat, D., Kusiak, E., Janus, M. & Morawski, A.W. (2009). TiO2 modified by ammonia as a long lifetime photocatalyst for dyes decomposition. Pol. J. Chem. Technol. 11(4), 1–6. DOI: 10.2478/v10026-009-0035-9.10.2478/v10026-009-0035-9
  29. 29. Bubacz, K., Choina, J., Dolat, D. & Morawski, A.W. (2010). Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol. J. Environ. Stud. 19(4), 685–691.
  30. 30. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67(4), 593–656. DOI: 10.1128/MMBR.67.4.593-656.2003.10.1128/MMBR.67.4.593-656.200330905114665678
  31. 31. Jiang, J., Oberdorster, G., Elder, A., Gelein, R., Mercer, P. & Biswas, P. (2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1), 33–42. DOI: 10.1080/17435390701882478.10.1080/17435390701882478293508620827377
  32. 32. Chen, D., Yang, D., Wang, Q. & Jiang, Z. (2006). Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45(12), 4110–4116. DOI: 10.1021/ie0600902.10.1021/ie0600902
  33. 33. Yang, Y., Zhong, H. & Tian, C. (2010). Photocatalytic mechanisms of modified titania under visible light. Res. Chem. Intermed. 37, 91–102. DOI: 10.1007/s11164-010-0232-4.10.1007/s11164-010-0232-4
Language: English
Page range: 56 - 64
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Paulina Rokicka, Agata Markowska-Szczupak, Łukasz Kowalczyk, Ewa Kowalska, Antoni W. Morawski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.