Have a personal or library account? Click to login
Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization Cover

Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

Open Access
|Dec 2016

References

  1. 1. Sheldon, R.A. & van Bekkum, H. (Eds.) Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH 2001.10.1002/9783527612963
  2. 2. Mitsudomea, T. & Kaneda, K. (2013). Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 15, 2636–2654. DOI: 10.1039/C3GC41360H.10.1039/c3gc41360h
  3. 3. Zhao, P., Feng, X., Huang, D., Yang, G. & Astruc, D. (2015) Basic concepts and recent advances in nitrophenol reduction by gold - and other transition metal nanoparticles. Coord. Chem. Rev. 287, 114–136. DOI:10.1016/j.ccr.2015.01.002.10.1016/j.ccr.2015.01.002
  4. 4. Santos, K. de O., Elias, W.C., Signori, A.M., Giacomelli, F.C., Yang, H. & Domingos, J.B. (2012). Synthesis and Catalytic Properties of Silver Nanoparticle−Linear Polyethylene Imine Colloidal Systems. J. Phys. Chem. C 116, 4594−4604. DOI: 10.1021/jp2087169.10.1021/jp2087169
  5. 5. Gao, S., Zhang, Z., Liu, K. & Dong, B. (2016). Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B: Environ 188, 245–252. DOI: 10.1016/j.apcatb.2016.01.074.10.1016/j.apcatb.2016.01.074
  6. 6. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Bagherzadeh, M. & Safari, R. (2015). Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J. Mol. Cat. A Chem. 400, 22–30. DOI: 10.1016/j.molcata.2015.01.032.10.1016/j.molcata.2015.01.032
  7. 7. Hatamifard, A., Nasrollahzadeh, M. & Lipkowski J. (2015). Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv. 5, 91372–91381. DOI: 10.1039/C5RA18476B.10.1039/C5RA18476B
  8. 8. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes. J. Coll. Interf. Sci. 470, 268–275. DOI: 10.1016/j.jcis.2016.02.060.10.1016/j.jcis.2016.02.06026962977
  9. 9. Tajbakhsh, M., Alinezhad, H., Nasrollahzadeh, M. & Kamali, T.A. (2016). Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: A recoverable catalyst for reduction of organic dyes. J. Alloy. Compd. 685, 258–265. DOI: 10.1016/j.jallcom.2016.05.278.10.1016/j.jallcom.2016.05.278
  10. 10. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo Eds. J. Alloy. Compd. 680, 309–314. DOI: 10.1016/j.jallcom.2016.04.008.10.1016/j.jallcom.2016.04.008
  11. 11. Nasrollahzadeh, M., Atarod, M., Jaleh, B. & Gandomirouzbahani, M. (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Inter. 42, 8587–8596. DOI: 10.1016/j.ceramint.2016.02.088.10.1016/j.ceramint.2016.02.088
  12. 12. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2015). Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv. 5, 91532–91543. DOI: 10.1039/c5ra17269a.10.1039/C5RA17269A
  13. 13. Fakhri, P., Nasrollahzadeh, M. & Jaleh, B. (2014). Graphene oxide supported Au nanoparticles as an efficient catalyst for reduction of nitro compounds and Suzuki–Miyaura coupling in water. RSC Adv. 4, 48691–48697. DOI: 10.1039/C4RA06562J.10.1039/C4RA06562J
  14. 14. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Alizadeh, M. & Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Col. Interf. Sci. 466, 360–368. DOI: 10.1016/j.jcis.2015.12.036.10.1016/j.jcis.2015.12.03626752431
  15. 15. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2016). Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Col. Interf. Sci. 465, 249–258. DOI: 10.1016/j.jcis.2015.11.060.10.1016/j.jcis.2015.11.06026674242
  16. 16. Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 312, 99–148. DOI: 10.1016/j.ccr.2015.12.005.10.1016/j.ccr.2015.12.005
  17. 17. Julkapli, N.M. & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. Int. J. Hydr. Energ. 40, 948–979.10.1016/j.ijhydene.2014.10.129
  18. 18. Xu, Y., Sheng, K., Li, Ch. & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4(7), 4324–4330. DOI: 10.1021/nn101187z.10.1021/nn101187z20590149
  19. 19. Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X. & Fan, H.J. (2015). Three-dimensional graphene and their integrated electrodes. Nano Today 9(6), 785–807. DOI: 10.1016/j.nantod.2014.12.001.10.1016/j.nantod.2014.12.001
  20. 20. Fang, Q., Shen, Y. & Chen, B. (2015). Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. Chem. Engine. J. 264, 753–771. DOI: 10.1016/j.cej.2014.12.001.10.1016/j.cej.2014.12.001
  21. 21. Li, J., Liu, Ch-Y. & Liu, Y. (2012). Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430. DOI: 10.1039/C2JM16386A.10.1039/c2jm16386a
  22. 22. Dubey, S.P., Dwivedi, A.D., Kim, I-Ch, Sillanpa, M., Kwon, Y-N. & Lee, Ch. (2014). Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Engine. J. 244, 160–167. DOI: 10.1016/j.cej.2014.01.042.10.1016/j.cej.2014.01.042
  23. 23. He, Y., Zhang, N., Gong, Q., Li, Z., Gao, J. & Qiu, H. (2012). Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589. DOI:10.1016/j.matchemphys.2012.04.011.10.1016/j.matchemphys.2012.04.011
  24. 24. Wu, T., Chen, M., Zhang, L., Xu, X., Liu, Y., Yan, J., Wang, W. & Gao, J. (2013). Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 1, 7612–7621. DOI: 10.1039/C3TA10989E.10.1039/c3ta10989e
  25. 25. ICDD PDF-2 Database Release 1998, ISSN 1084–3116.
  26. 26. Kondratowicz, I., Żelechowska, K. & Sadowski, W. (2015). Optimization of graphene oxide synthesis and its reduction. In O. Fesenko & L. Yatsenko (Eds.), Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (pp. 467–484). Springer.10.1007/978-3-319-18543-9_33
  27. 27. Kondratowicz, I. (2014). Porous graphene electrodes. Synthesis, modifications and characterization. Unpublished Master Thesis. Gdansk University of Technology, Gdansk, Poland.
  28. 28. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice C.A. & Ruoff, R.S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152. DOI: 10.1016/j.carbon.2008.09.045.10.1016/j.carbon.2008.09.045
  29. 29. Lisiecki, I. & Pileni, M.P. (1995). Copper Metallic Particles Synthesized “in Situ” in Reverse Micelles: Influence of Various Parameters on the Size of the Particles. J. Phys. Chem. 99, 5077–5082. DOI: 10.1021/j100014a030.10.1021/j100014a030
  30. 30. Wunder, S., Polzer, F., Lu, Y. & Mei, Y. (2010). Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C. 114, 8814−8820. DOI: 10.1021/jp101125j.10.1021/jp101125j
  31. 31. Wunder, S., Lu, Y., Albrecht, M. & Ballauff, M. (2011). Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-induced Surface Restructuring. ACS Catal. 1, 908−916. DOI: 10.1021/cs200208a.10.1021/cs200208a
  32. 32. Gu, S., Wunder, S., Lu, Y. & Ballauff, M. (2014). Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J. Phys. Chem. C 118, 18618−18625. DOI: 10.1021/jp5060606.10.1021/jp5060606
  33. 33. Sherazi, S.T.H., Soomro, R.A., Uddin, S. & Memon, N. (2014). Synthesis and characterizations of highly efficient copper nanoparticles and their use in ultrafast catalytic degradation of organic dyes. Adv. Mater. Res. 829, 93–99. DOI: 10.4028/www.scientific.net/AMR.829.93.10.4028/www.scientific.net/AMR.829.93
  34. 34. Hang, L., Zhao, Y., Zhang, H., Liu, G., Cai, W., Li, Y. & Qu, L. (2016). Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta Mater. 105, 59–67. DOI:10.1016/j.actamat.2015.12.029.10.1016/j.actamat.2015.12.029
Language: English
Page range: 47 - 55
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Kamila Żelechowska, Izabela Kondratowicz, Maria Gazda, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.