Have a personal or library account? Click to login
Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2 Cover

Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

Open Access
|Jun 2016

References

  1. 1. Ramos, E.Z., Júnior, R.H.M., de Castro, P.F., Tardioli, P.W., Mendes, A.A., Fernandéz-Lafuente, R. & Hirata, D.B. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B-Enzym. 118, 43–51. DOI: 10.1016/j.molcatb.2015.05.009.10.1016/j.molcatb.2015.05.009
  2. 2. Maldonado, R.R., Aguiar-Oliveira, E., Pozza, E.L., Costa, F.A.A., Mazutti, M.A., Maugeri, F. & Rodrigues, M.I. (2015). Application of yeast hydrolysate in extracellular lipase production by Geotrichum candidum in shaken flasks, stirred tank, and airlift reactors. Can. J. Chem. Eng. 93, 1524–1530. DOI: 10.1002/cjce.22260.10.1002/cjce.22260
  3. 3. Souza, R.L., Lima, R.A., Coutinho, J.A., Soares, C.M. & Lima, Á.S. (2015). Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process. Biochem. 50, 1459–1467. DOI: 10.1016/j.procbio.2015.05.015.10.1016/j.procbio.2015.05.015
  4. 4. Gupta, R., Gupta, N. & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781. DOI: 10.1007/s00253-004-1568-8.10.1007/s00253-004-1568-8
  5. 5. Beisson, F., Tiss, A., Rivière, C. & Verger, R. (2000). Methods for lipase detection and assay: A critical review. Eur. J. Lipid. Sci. Technol. 102, 133–153. DOI: 10.1002/(SICI)1438–9312.
  6. 6. Kushner, D.J. (1993). Growth and nutrition of halophilic bacteria; In: R. H. Vreeland and L. Hochstein (eds): The Biology of Halophilic Bacteria (pp. 87–103). Boca Raton, FL, USA: CRC Press.
  7. 7. Su, J., Zhang, F., Sun, W., Karuppiah, V., Zhang, G., Li, Z. & Jiang, Q. (2015). A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World. J. Microb. Biot. 31, 1093–1102.10.1007/s11274-015-1859-5
  8. 8. Oren, A. (2002). Cellular Origin and Life in Extreme Habitats, Halophilic Microorganisms and Their Environments (2002 ed.). NY, USA: Kluwer Academic Publishers.10.1007/0-306-48053-0
  9. 9. Kushner, D.J. (1978). Life in high salt and solute concentrations: halophilic bacteria; In: Kushner D.J. (ed.) Microbial Life in Extreme Environments (pp. 317–368). London, UK: Academic Press.
  10. 10. Oren, A. (2000). Life at high salt concentrations; In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophsiology, Isolation, Identifications, Applications (3rd ed.). NY, USA: Springer Verlag.
  11. 11. MacElroy, R.D. (1974). Some comments on the evolution of extremophiles. Biosystems 6, 74–75. DOI: Not found.10.1016/0303-2647(74)90026-4
  12. 12. Eichler, J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19, 261–278. DOI: 10.1016/S0734-9750(01)00061-1.10.1016/S0734-9750(01)00061-1
  13. 13. Gomes, J. & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42, 223–235. DOI: Not found.
  14. 14. van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 6, 213–218. DOI: 10.1016/S1369-5274(03)00060-2.10.1016/S1369-5274(03)00060-2
  15. 15. Emampour, M., Noghabi, K.A. & Zahiri, H.S. (2015). Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J. Mol. Catal. B: Enzym. 111, 79–86. DOI: 10.1016/j.molcatb.2014.10.01210.1016/j.molcatb.2014.10.012
  16. 16. Brown, A.D. (1963). The peripheral structures of Gramnegative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium Halobacterium halobium. Biochim. Biophys. Acta 75, 425–435. DOI: 10.1016/0006-3002(63)90630-9.10.1016/0006-3002(63)90630-9
  17. 17. Attar, A., Ogan, A., Yucel, S. & Turan, K. (2016). The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol. 44, 710–716. DOI: 10.3109/21691401.2014.982800.10.3109/21691401.2014.982800
  18. 18. Ozcan, B., Ozyilmaz, G., Cokmus, C. & Caliskan, M. (2009). Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J. Ind. Microbiol. Biotechnol. 36, 105–110. DOI: 10.1007/s10295-008-0477-8.10.1007/s10295-008-0477-8
  19. 19. Daoud, L., Kamoun, J., Ali, M.B., Jallouli, R., Bradai, R., Mechichi, T., Gargouri, Y. Ali, Y.B. & Aloulou, A. (2013). Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int. J. Biol. Macromol. 57, 232–237. DOI: 10.1016/j.ijbiomac.2013.03.018.10.1016/j.ijbiomac.2013.03.018
  20. 20. Boutaiba, S., Bhatnagar, T., Hacene, H., Mitchell, D.A. & Baratti, J.C. (2006). Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon Natronococcus sp. J. Mol. Catal. B: Enzym. 41, 21–26. DOI: 10.1016/j.molcatb.2006.03.010.10.1016/j.molcatb.2006.03.010
  21. 21. Rohban, R., Amoozegar, M.A. & Ventosa, A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36, 333–340. DOI: 10.1007/s10295-008-0500-0.10.1007/s10295-008-0500-0
  22. 22. Sugihara, A., Tani, T. & Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109, 211–216. DOI: Not found.
  23. 23. Sugiura, M., Oikawa, T., Hirano, K. & Inukai, T. (1977). Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488, 353–358. DOI: 10.1016/0005-2760(77)90194-1.10.1016/0005-2760(77)90194-1
  24. 24. Arpigny, J.L., Jendrossek, D. & Jaeger, K.E. (1998). A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol. Lett. 167, 69–73. DOI: 10.1111/j.1574-6968.1998.tb13209.x.10.1111/j.1574-6968.1998.tb13209.x9785454
  25. 25. Kim, H.K., Jung, Y.J., Choi, W.C., Ryu, H.S., Oh, T.K. & Lee, J.K. (2004). Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235, 349–355. DOI: 10.1111/j.1574-6968.2004.tb09609.x.10.1111/j.1574-6968.2004.tb09609.x
  26. 26. Sengel, B.S. (2007). Investigation of microbial lipase production conditions as detergent additive. Unpublished dissertation. Ankara University, Ankara, Turkey.
  27. 27. Pérez, D., Martín, S., Fernández-Lorente, G., Filice, M., Guisán, J.M., Ventosa, A. & Mellado, E. (2011). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325. DOI: 10.1371/journal.pone.0023325.10.1371/journal.pone.0023325315443821853111
  28. 28. Bhatnagar, T., Boutaiba, S., Hacene, H., Cayol, J.L., Fardeau, M.L., Ollivier, B. & Baratti, J.C. (2005). Lipolytic activity from Halobacteria: Screening and hydrolase production. FEMS Microbiol. Lett. 248, 133–140. DOI: 10.1016/j.femsle.2005.05.044.10.1016/j.femsle.2005.05.04415979821
  29. 29. Gutarra, M.L.E., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Freire, D.M.G. & Castilho, L.R. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol. 100, 5249–5254. DOI: 10.1016/j.biortech.2008.08.050.10.1016/j.biortech.2008.08.05019560339
  30. 30. Li, X. & Yu, H.Y. (2014). Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 59, 455–463. DOI: 10.1007/s12223-014-0320-8.10.1007/s12223-014-0320-824789461
  31. 31. Muller-Santos, M., de Souza, E.M., Pedrosa, F.O., Mitchell, D.A., Longhi, S., Carriere, F., Canaan, S. & Krieger, N. (2009). First evidence for the salt dependent folding and activity of an esterase from halophilic archae Haloarcula marismortui. Biochim. Biophys. Acta 1791, 719–729. DOI: 10.1016/j.bbalip.2009.03.006.10.1016/j.bbalip.2009.03.00619303051
  32. 32. Camacho, R.M., Mateos, J.C., Gonzalez-Reynoso, O., Prado, L.A. & Cordova, J. (2009). Production and characterization of esterase and lipase from Haloarcula marismortui. J. Ind. Microbiol. Biotechnol. 36, 901–909. DOI: 10.1007/s10295-009-0568-1.10.1007/s10295-009-0568-119350295
  33. 33. Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carrière, F. & Cavalier, J.F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharm. Res. 28, 1831–1842. DOI: 10.1007/s11095-010-0362-9.10.1007/s11095-010-0362-921234659
  34. 34. Palacios, D., Busto, M.D. & Ortega, N. (2014). Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT-Food Sci. Technol. 55, 536–542. DOI: 10.1016/j.lwt.2013.10.027.10.1016/j.lwt.2013.10.027
  35. 35. Takac, S. & Sengel, S. (2010). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Prep Biochem. Biotechnol. 40, 28–37. DOI: 10.1080/10826060903388820.10.1080/1082606090338882020024792
Language: English
Page range: 20 - 25
Published on: Jun 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Melis Ozgen, Azade Attar, Yeliz Elalmis, Meral Birbir, Sevil Yucel, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.